我正尝试采用一种可变的纸板,作为时间功能,使用插头1,但并不奏效,而是给我一种病媒,而不是因为我的融合而获得一种价值,
function RunLogisticOscilFisher
omega = 1;
k = 10;
N0 = 1;
A = 1;
p0 = .1;
tspan=(0:0.1:10);
% Finding the numerical solution for the function using ode45 solver
[t,p]=ode45(@logisticOscilfisher,tspan,p0,[],N0,k,omega);
% [t,p]=ode23s(@(t,p) N0*sin(omega*t)*p*(1-p./k),tspan,p0,odeset( AbsTol ,1e-8, RelTol ,1e-10 ));
% Plotting the function with time
figure(1)
plot(t,p)
% Finding the integral to get the fisher information with respect to p
f = @(p) ( ( A.*(((N0*sin(omega*t).^2.*(1-2*p./k))+(omega.*cos(omega*t) )
).^2)./(N0.^2*sin(omega*t).^4.*(p-p.^2./k).^2) ) )
I1=integral( f, 11,20, ArrayValued ,true)
I2=integral(f,11,40, ArrayValued ,true)
I3=integral(f,11,60, ArrayValued ,true)
I4=integral(f,11,80, ArrayValued ,true)
I5=integral(f,11,101, ArrayValued ,true)
I=[I1,I2,I3,I4,I5]
II=[I1./20 I2./40 I3./60 I4./80 I5./101]
T=[20 40 60 80 101] ;
%Plotting the Fisher Information
figure(2)
plot(T,I, b- ), hold on
plot(T,II, r- )
hold off
% Finding the integral to get the fisher information with respect to t
P = @(T) interp1(t,p,T);
ff = @(t) ( A.*(((N0*sin(omega*t).^2.*(1-2*p./k))+(omega.*cos(omega*t) )
).^2)./(N0.^2*sin(omega*t).^4.*(p-p.^2./k).^2) )
J1=integral( ff, 0.1,2, ArrayValued ,true)
J2=integral( ff, 0.1,4, ArrayValued ,true)
J3=integral( ff, 0.1,6, ArrayValued ,true)
J4=integral(ff,0.1,8, ArrayValued ,true)
J5=integral(ff,0.1,10, ArrayValued ,true)
J=[J1,J2,J3,J4,J5]
JJ=[J1./2 J2./4 J3./6 J4./8 J5./10]
R=[2,4,6,8,10] ;
%Plotting the Fisher Information
figure(3)
plot(R,J, b- ), hold on
plot(R,JJ, r- )
hold off
figure(4)
plot(t,f(t))
figure(5)
plot(log(t),log(f(t)))
P = @(T) interp1(t,p,T);
a=exp(1-cos(t));
fff = @(T) ( ( A.* ( (sin(t)).^2 .* ( 1-2.*( a./ (9.9 + 0.1 .* a ) )./10 ) + cos(t) ).^2
) ./ ( (sin(t)).^4 .* ( ( a ./ (9.9+(0.1.*a))) - ( ( a ./ ( 9.9 + ( 0.1 .* a) )
).^2 ./10 ) ).^2 ) )
K1=integral( fff, 0,2, ArrayValued ,true)
K2=integral( fff, 0,4, ArrayValued ,true)
K3=integral( fff, 0,6, ArrayValued ,true)
K4=integral(fff,0,8, ArrayValued ,true)
K5=integral(fff,0,10, ArrayValued ,true)
K=[K1,K2,K3,K4,K5]
KK=[K1./2 K2./4 K3./6 K4./8 K5./10]
%Plotting the Fisher Information
figure(6)
plot(R,K, b- ), hold on
plot(R,KK, r- )
hold off
1;
% function dpdt = logisticOscilfisher(t,p,N0,k,omega)
% dpdt = N0*sin(omega*t)*p*(1-p/k);
% end