Imagine a 3x3 grid:
[A, B, %]
[C, %, D]
[E, F, G]
<>%在空位/空位中位。
浏览量可以像灯塔那样,这样,第一行组合的变动可能是:
[A, B, %] or [A, %, B] or [%, A, B]
同样,第二行也是如此。 第三行没有空档,因此无法改变。
鉴于每一行之间可能相互交错,我正试图生产所有可能的电网。
产出应产生以下电网:
[A, B, %] [A, B, %] [A, B, %]
[C, D, %] [C, %, D] [%, C, D]
[E, F, G] [E, F, G] [E, F, G]
[A, %, B] [A, %, B] [A, %, B]
[C, D, %] [C, %, D] [%, C, D]
[E, F, G] [E, F, G] [E, F, G]
[%, A, B] [%, A, B] [%, A, B]
[C, D, %] [C, %, D] [%, C, D]
[E, F, G] [E, F, G] [E, F, G]
我尝试了一种办法,通过每一行寻找,改变左翼和右边,然后产生新的电网,并重新开垦。 我把所有电网都保留在一套电网中,确保我只生产已经经过审查的避开无限期再入侵的位置。
然而,我的算法似乎非常低效率(每mut1s!) 并且不只看一.。 我很想知道,这样做是否有雄辩的方法? 尤其是 p。
我有一些模糊的想法,但我确信,这样做是短暂和简单,我 over。
<>光线> 3x3只是一个例子。 争.可能具有任何规模,而且确实是混血管。 例如:
[A, %, C]
[D, E, %, G]
[H, I]
也是有效的网格。
<><><>><>>>> 这些信件必须维持命令。 例如[A. %, B]! [B, %,A]
和[B, A, %]