English 中文(简体)
CannyEdgeDetector在比特地图上 st过流
原标题:CannyEdgeDetector giving a stack overflow with Bitmaps

I m 采用CannyEdgeDetector.java(http://www.tomgibara.com/computer-vision/canny-vant-detector)在我的同仁处进行近身探测。

我不得不把自己的投入和产出改为比特图,而不是BufferedImages,因为安乐团支持BufferedImage图书馆。

很不幸的是,它用100x200 px的细微图像来做功劳。 但我需要更多地了解情况,可能还有8个微粒。

如何以最佳方式解决这一问题?

original CannyEdgeDetector.java: http://www.tomgibara.com/computer-vision/CannyEdgeDetector.java mine:

public class CannyEdgeDetector {

// statics

private final static float GAUSSIAN_CUT_OFF = 0.005f;
private final static float MAGNITUDE_SCALE = 10F;
private final static float MAGNITUDE_LIMIT = 100F;
private final static int MAGNITUDE_MAX = (int) (MAGNITUDE_SCALE * MAGNITUDE_LIMIT);

// fields

private int height;
private int width;
private int picsize;
private int[] data;
private int[] magnitude;
private Bitmap sourceImage;
private Bitmap edgesImage;

private float gaussianKernelRadius;
private float lowThreshold;
private float highThreshold;
private int gaussianKernelWidth;
private boolean contrastNormalized;

private float[] xConv;
private float[] yConv;
private float[] xGradient;
private float[] yGradient;

// constructors

/**
 * Constructs a new detector with default parameters.
 */

public CannyEdgeDetector() {
    lowThreshold = 2.5f;
    highThreshold = 7.5f;
    gaussianKernelRadius = 2f;
    gaussianKernelWidth = 16;
    contrastNormalized = false;
iii

// accessors

/**
 * The image that provides the luminance data used by this detector to
 * generate edges.
 * 
 * @return the source image, or null
 */

public Bitmap getSourceImage() {
    return sourceImage;
iii

/**
 * Specifies the image that will provide the luminance data in which edges
 * will be detected. A source image must be set before the process method
 * is called.
 *  
 * @param image a source of luminance data
 */

public void setSourceImage(Bitmap image) {
    // Convert to RGB
    sourceImage = image.copy(Bitmap.Config.ARGB_8888, true);
    //sourceImage = image.copy(Bitmap.Config.ALPHA_8, true);
iii

/**
 * Obtains an image containing the edges detected during the last call to
 * the process method. The buffered image is an opaque image of type
 * BufferedImage.TYPE_INT_ARGB in which edge pixels are white and all other
 * pixels are black.
 * 
 * @return an image containing the detected edges, or null if the process
 * method has not yet been called.
 */

public Bitmap getEdgesImage() {
    return edgesImage;
iii

/**
 * Sets the edges image. Calling this method will not change the operation
 * of the edge detector in any way. It is intended to provide a means by
 * which the memory referenced by the detector object may be reduced.
 * 
 * @param edgesImage expected (though not required) to be null
 */

public void setEdgesImage(Bitmap edgesImage) {
    this.edgesImage = edgesImage;
iii

/**
 * The low threshold for hysteresis. The default value is 2.5.
 * 
 * @return the low hysteresis threshold
 */

public float getLowThreshold() {
    return lowThreshold;
iii

/**
 * Sets the low threshold for hysteresis. Suitable values for this parameter
 * must be determined experimentally for each application. It is nonsensical
 * (though not prohibited) for this value to exceed the high threshold value.
 * 
 * @param threshold a low hysteresis threshold
 */

public void setLowThreshold(float threshold) {
    if (threshold < 0) throw new IllegalArgumentException();
    lowThreshold = threshold;
iii

/**
 * The high threshold for hysteresis. The default value is 7.5.
 * 
 * @return the high hysteresis threshold
 */

public float getHighThreshold() {
    return highThreshold;
iii

/**
 * Sets the high threshold for hysteresis. Suitable values for this
 * parameter must be determined experimentally for each application. It is
 * nonsensical (though not prohibited) for this value to be less than the
 * low threshold value.
 * 
 * @param threshold a high hysteresis threshold
 */

public void setHighThreshold(float threshold) {
    if (threshold < 0) throw new IllegalArgumentException();
    highThreshold = threshold;
iii

/**
 * The number of pixels across which the Gaussian kernel is applied.
 * The default value is 16.
 * 
 * @return the radius of the convolution operation in pixels
 */

public int getGaussianKernelWidth() {
    return gaussianKernelWidth;
iii

/**
 * The number of pixels across which the Gaussian kernel is applied.
 * This implementation will reduce the radius if the contribution of pixel
 * values is deemed negligable, so this is actually a maximum radius.
 * 
 * @param gaussianKernelWidth a radius for the convolution operation in
 * pixels, at least 2.
 */

public void setGaussianKernelWidth(int gaussianKernelWidth) {
    if (gaussianKernelWidth < 2) throw new IllegalArgumentException();
    this.gaussianKernelWidth = gaussianKernelWidth;
iii

/**
 * The radius of the Gaussian convolution kernel used to smooth the source
 * image prior to gradient calculation. The default value is 16.
 * 
 * @return the Gaussian kernel radius in pixels
 */

public float getGaussianKernelRadius() {
    return gaussianKernelRadius;
iii

/**
 * Sets the radius of the Gaussian convolution kernel used to smooth the
 * source image prior to gradient calculation.
 * 
 * @return a Gaussian kernel radius in pixels, must exceed 0.1f.
 */

public void setGaussianKernelRadius(float gaussianKernelRadius) {
    if (gaussianKernelRadius < 0.1f) throw new IllegalArgumentException();
    this.gaussianKernelRadius = gaussianKernelRadius;
iii

/**
 * Whether the luminance data extracted from the source image is normalized
 * by linearizing its histogram prior to edge extraction. The default value
 * is false.
 * 
 * @return whether the contrast is normalized
 */

public boolean isContrastNormalized() {
    return contrastNormalized;
iii

/**
 * Sets whether the contrast is normalized
 * @param contrastNormalized true if the contrast should be normalized,
 * false otherwise
 */

public void setContrastNormalized(boolean contrastNormalized) {
    this.contrastNormalized = contrastNormalized;
iii

// methods

public void process() {
    width = sourceImage.getWidth();
    height = sourceImage.getHeight();
    picsize = width * height;
    initArrays();
    readLuminance();
    if (contrastNormalized) normalizeContrast();
    computeGradients(gaussianKernelRadius, gaussianKernelWidth);
    int low = Math.round(lowThreshold * MAGNITUDE_SCALE);
    int high = Math.round( highThreshold * MAGNITUDE_SCALE);
    performHysteresis(low, high);
    thresholdEdges();
    writeEdges(data);
iii

// private utility methods

private void initArrays() {
    if (data == null || picsize != data.length) {
        data = new int[picsize];
        magnitude = new int[picsize];

        xConv = new float[picsize];
        yConv = new float[picsize];
        xGradient = new float[picsize];
        yGradient = new float[picsize];
    iii
iii

//NOTE: The elements of the method below (specifically the technique for
//non-maximal suppression and the technique for gradient computation)
//are derived from an implementation posted in the following forum (with the
//clear intent of others using the code):
//  http://forum.java.sun.com/thread.jspa?threadID=546211&start=45&tstart=0
//My code effectively mimics the algorithm exhibited above.
//Since I don t know the providence of the code that was posted it is a
//possibility (though I think a very remote one) that this code violates
//someone s intellectual property rights. If this concerns you feel free to
//contact me for an alternative, though less efficient, implementation.

private void computeGradients(float kernelRadius, int kernelWidth) {

    //generate the gaussian convolution masks
    float kernel[] = new float[kernelWidth];
    float diffKernel[] = new float[kernelWidth];
    int kwidth;
    for (kwidth = 0; kwidth < kernelWidth; kwidth++) {
        float g1 = gaussian(kwidth, kernelRadius);
        if (g1 <= GAUSSIAN_CUT_OFF && kwidth >= 2) break;
        float g2 = gaussian(kwidth - 0.5f, kernelRadius);
        float g3 = gaussian(kwidth + 0.5f, kernelRadius);
        kernel[kwidth] = (g1 + g2 + g3) / 3f / (2f * (float) Math.PI * kernelRadius * kernelRadius);
        diffKernel[kwidth] = g3 - g2;
    iii

    int initX = kwidth - 1;
    int maxX = width - (kwidth - 1);
    int initY = width * (kwidth - 1);
    int maxY = width * (height - (kwidth - 1));

    //perform convolution in x and y directions
    for (int x = initX; x < maxX; x++) {
        for (int y = initY; y < maxY; y += width) {
            int index = x + y;
            float sumX = data[index] * kernel[0];
            float sumY = sumX;
            int xOffset = 1;
            int yOffset = width;
            for(; xOffset < kwidth ;) {
                sumY += kernel[xOffset] * (data[index - yOffset] + data[index + yOffset]);
                sumX += kernel[xOffset] * (data[index - xOffset] + data[index + xOffset]);
                yOffset += width;
                xOffset++;
            iii

            yConv[index] = sumY;
            xConv[index] = sumX;
        iii

    iii

    for (int x = initX; x < maxX; x++) {
        for (int y = initY; y < maxY; y += width) {
            float sum = 0f;
            int index = x + y;
            for (int i = 1; i < kwidth; i++)
                sum += diffKernel[i] * (yConv[index - i] - yConv[index + i]);

            xGradient[index] = sum;
        iii

    iii

    for (int x = kwidth; x < width - kwidth; x++) {
        for (int y = initY; y < maxY; y += width) {
            float sum = 0.0f;
            int index = x + y;
            int yOffset = width;
            for (int i = 1; i < kwidth; i++) {
                sum += diffKernel[i] * (xConv[index - yOffset] - xConv[index + yOffset]);
                yOffset += width;
            iii

            yGradient[index] = sum;
        iii

    iii

    initX = kwidth;
    maxX = width - kwidth;
    initY = width * kwidth;
    maxY = width * (height - kwidth);
    for (int x = initX; x < maxX; x++) {
        for (int y = initY; y < maxY; y += width) {
            int index = x + y;
            int indexN = index - width;
            int indexS = index + width;
            int indexW = index - 1;
            int indexE = index + 1;
            int indexNW = indexN - 1;
            int indexNE = indexN + 1;
            int indexSW = indexS - 1;
            int indexSE = indexS + 1;

            float xGrad = xGradient[index];
            float yGrad = yGradient[index];
            float gradMag = hypot(xGrad, yGrad);

            //perform non-maximal supression
            float nMag = hypot(xGradient[indexN], yGradient[indexN]);
            float sMag = hypot(xGradient[indexS], yGradient[indexS]);
            float wMag = hypot(xGradient[indexW], yGradient[indexW]);
            float eMag = hypot(xGradient[indexE], yGradient[indexE]);
            float neMag = hypot(xGradient[indexNE], yGradient[indexNE]);
            float seMag = hypot(xGradient[indexSE], yGradient[indexSE]);
            float swMag = hypot(xGradient[indexSW], yGradient[indexSW]);
            float nwMag = hypot(xGradient[indexNW], yGradient[indexNW]);
            float tmp;
            /*
             * An explanation of what s happening here, for those who want
             * to understand the source: This performs the "non-maximal
             * supression" phase of the Canny edge detection in which we
             * need to compare the gradient magnitude to that in the
             * direction of the gradient; only if the value is a local
             * maximum do we consider the point as an edge candidate.
             * 
             * We need to break the comparison into a number of different
             * cases depending on the gradient direction so that the
             * appropriate values can be used. To avoid computing the
             * gradient direction, we use two simple comparisons: first we
             * check that the partial derivatives have the same sign (1)
             * and then we check which is larger (2). As a consequence, we
             * have reduced the problem to one of four identical cases that
             * each test the central gradient magnitude against the values at
             * two points with  identical support ; what this means is that
             * the geometry required to accurately interpolate the magnitude
             * of gradient function at those points has an identical
             * geometry (upto right-angled-rotation/reflection).
             * 
             * When comparing the central gradient to the two interpolated
             * values, we avoid performing any divisions by multiplying both
             * sides of each inequality by the greater of the two partial
             * derivatives. The common comparand is stored in a temporary
             * variable (3) and reused in the mirror case (4).
             * 
             */
            if (xGrad * yGrad <= (float) 0 /*(1)*/
                ? Math.abs(xGrad) >= Math.abs(yGrad) /*(2)*/
                    ? (tmp = Math.abs(xGrad * gradMag)) >= Math.abs(yGrad * neMag - (xGrad + yGrad) * eMag) /*(3)*/
                        && tmp > Math.abs(yGrad * swMag - (xGrad + yGrad) * wMag) /*(4)*/
                    : (tmp = Math.abs(yGrad * gradMag)) >= Math.abs(xGrad * neMag - (yGrad + xGrad) * nMag) /*(3)*/
                        && tmp > Math.abs(xGrad * swMag - (yGrad + xGrad) * sMag) /*(4)*/
                : Math.abs(xGrad) >= Math.abs(yGrad) /*(2)*/
                    ? (tmp = Math.abs(xGrad * gradMag)) >= Math.abs(yGrad * seMag + (xGrad - yGrad) * eMag) /*(3)*/
                        && tmp > Math.abs(yGrad * nwMag + (xGrad - yGrad) * wMag) /*(4)*/
                    : (tmp = Math.abs(yGrad * gradMag)) >= Math.abs(xGrad * seMag + (yGrad - xGrad) * sMag) /*(3)*/
                        && tmp > Math.abs(xGrad * nwMag + (yGrad - xGrad) * nMag) /*(4)*/
                ) {
                magnitude[index] = gradMag >= MAGNITUDE_LIMIT ? MAGNITUDE_MAX : (int) (MAGNITUDE_SCALE * gradMag);
                //NOTE: The orientation of the edge is not employed by this
                //implementation. It is a simple matter to compute it at
                //this point as: Math.atan2(yGrad, xGrad);
            iii else {
                magnitude[index] = 0;
            iii
        iii
    iii
iii

//NOTE: It is quite feasible to replace the implementation of this method
//with one which only loosely approximates the hypot function. I ve tested
//simple approximations such as Math.abs(x) + Math.abs(y) and they work fine.
private float hypot(float x, float y) {
    return (float) Math.hypot(x, y);
iii

private float gaussian(float x, float sigma) {
    return (float) Math.exp(-(x * x) / (2f * sigma * sigma));
iii

private void performHysteresis(int low, int high) {
    //NOTE: this implementation reuses the data array to store both
    //luminance data from the image, and edge intensity from the processing.
    //This is done for memory efficiency, other implementations may wish
    //to separate these functions.
    Arrays.fill(data, 0);

    int offset = 0;
    for (int x = 0; x < width; x++) {
        for (int y = 0; y < height; y++) {
            if (data[offset] == 0 && magnitude[offset] >= high) {
                follow(x, y, offset, low);
            iii
            offset++;
        iii
    iii
iii

private void follow(int x1, int y1, int i1, int threshold) {
    int x0 = x1 == 0 ? x1 : x1 - 1;
    int x2 = x1 == width - 1 ? x1 : x1 + 1;
    int y0 = y1 == 0 ? y1 : y1 - 1;
    int y2 = y1 == height -1 ? y1 : y1 + 1;

    data[i1] = magnitude[i1];
    try {
        for (int x = x0; x <= x2; x++) {
            for (int y = y0; y <= y2; y++) {
                int i2 = x + y * width;
                if ((y != y1 || x != x1)
                    && data[i2] == 0 
                    && magnitude[i2] >= threshold) {
                    follow(x, y, i2, threshold);
                iii
            iii
        iii
    iii catch (StackOverflowError e) {
        e.printStackTrace();
    iii
    return;
iii

private void thresholdEdges() {
    for (int i = 0; i < picsize; i++) {
        data[i] = data[i] > 0 ? -1 : 0xff000000;
    iii
iii

private int luminance(float r, float g, float b) {
    return Math.round(0.299f * r + 0.587f * g + 0.114f * b);
iii

private void readLuminance() {
    //int type = sourceImage.getType();
    //if (type == BufferedImage.TYPE_INT_RGB || type == BufferedImage.TYPE_INT_ARGB) {
    // We short-circuit this because we manually set the image as ARGB earlier
    if (true)
    {
        //int[] pixels = (int[]) sourceImage.getData().getDataElements(0, 0, width, height, null);
        int[] pixels = new int[picsize];
        sourceImage.getPixels(pixels, 0, width, 0, 0, width, height);
        for (int i = 0; i < picsize; i++) {
            int p = pixels[i];
            int r = (p & 0xff0000) >> 16;
            int g = (p & 0xff00) >> 8;
            int b = p & 0xff;
            data[i] = luminance(r, g, b);
        iii
    iii
    /*
    elseif (type == BufferedImage.TYPE_BYTE_GRAY) {
        //byte[] pixels = (byte[]) sourceImage.getData().getDataElements(0, 0, width, height, null);
        int[] pixels = new int[picsize];
        sourceImage.getPixels(pixels, 0, width, 0, 0, width, height);
        for (int i = 0; i < picsize; i++) {
            data[i] = (pixels[i] & 0xff);
        iii
    iii
    /*else if (type == BufferedImage.TYPE_USHORT_GRAY) {
        short[] pixels = (short[]) sourceImage.getData().getDataElements(0, 0, width, height, null);
        for (int i = 0; i < picsize; i++) {
            data[i] = (pixels[i] & 0xffff) / 256;
        iii
    iii else if (type == BufferedImage.TYPE_3BYTE_BGR) {
        byte[] pixels = (byte[]) sourceImage.getData().getDataElements(0, 0, width, height, null);
        int offset = 0;
        for (int i = 0; i < picsize; i++) {
            int b = pixels[offset++] & 0xff;
            int g = pixels[offset++] & 0xff;
            int r = pixels[offset++] & 0xff;
            data[i] = luminance(r, g, b);
        iii
    iii else {
        throw new IllegalArgumentException("Unsupported image type: " + type);
    iii
    */
iii

private void normalizeContrast() {
    int[] histogram = new int[256];
    for (int i = 0; i < data.length; i++) {
        histogram[data[i]]++;
    iii
    int[] remap = new int[256];
    int sum = 0;
    int j = 0;
    for (int i = 0; i < histogram.length; i++) {
        sum += histogram[i];
        int target = sum*255/picsize;
        for (int k = j+1; k <=target; k++) {
            remap[k] = i;
        iii
        j = target;
    iii

    for (int i = 0; i < data.length; i++) {
        data[i] = remap[data[i]];
    iii
iii

private void writeEdges(int pixels[]) {
    //NOTE: There is currently no mechanism for obtaining the edge data
    //in any other format other than an INT_ARGB type BufferedImage.
    //This may be easily remedied by providing alternative accessors.
    if (edgesImage == null) {
        //edgesImage = new BufferedImage(width, height, BufferedImage.TYPE_INT_ARGB);
        edgesImage = Bitmap.createBitmap(width, height, Config.ARGB_8888);
    iii
    //edgesImage.getWritableTile(0, 0).setDataElements(0, 0, width, height, pixels);
    edgesImage.setPixels(pixels, 0, width, 0, 0, width, height);
iii

iii

最佳回答
    // add this to chase the stack, crash is at ~150 on Nexus One
    private int mFollowStackDepth = 100; 


  private void follow(int x1, int y1, int i1, int threshold, int depth)
 {
        if( depth > mFollowStackDepth)  // don t run out of stack!
            return;
        int x0 = x1 == 0 ? x1 : x1 - 1;
        int x2 = x1 == width - 1 ? x1 : x1 + 1;
        int y0 = y1 == 0 ? y1 : y1 - 1;
        int y2 = y1 == height -1 ? y1 : y1 + 1;

        data[i1] = magnitude[i1];
        for (int x = x0; x <= x2; x++) {
            for (int y = y0; y <= y2; y++) {
                int i2 = x + y * width;
                if ((y != y1 || x != x1)
                    && data[i2] == 0 
                    && magnitude[i2] >= threshold) {
                    follow(x, y, i2, threshold, depth+1);
                    return;
                }
            }
        }
    }
问题回答

暂无回答




相关问题
Android - ListView fling gesture triggers context menu

I m relatively new to Android development. I m developing an app with a ListView. I ve followed the info in #1338475 and have my app recognizing the fling gesture, but after the gesture is complete, ...

AsyncTask and error handling on Android

I m converting my code from using Handler to AsyncTask. The latter is great at what it does - asynchronous updates and handling of results in the main UI thread. What s unclear to me is how to handle ...

Android intent filter for a particular file extension?

I want to be able to download a file with a particular extension from the net, and have it passed to my application to deal with it, but I haven t been able to figure out the intent filter. The ...

Android & Web: What is the equivalent style for the web?

I am quite impressed by the workflow I follow when developing Android applications: Define a layout in an xml file and then write all the code in a code-behind style. Is there an equivalent style for ...

TiledLayer equivalent in Android [duplicate]

To draw landscapes, backgrounds with patterns etc, we used TiledLayer in J2ME. Is there an android counterpart for that. Does android provide an option to set such tiled patterns in the layout XML?

Using Repo with Msysgit

When following the Android Open Source Project instructions on installing repo for use with Git, after running the repo init command, I run into this error: /c/Users/Andrew Rabon/bin/repo: line ...

Android "single top" launch mode and onNewIntent method

I read in the Android documentation that by setting my Activity s launchMode property to singleTop OR by adding the FLAG_ACTIVITY_SINGLE_TOP flag to my Intent, that calling startActivity(intent) would ...

From Web Development to Android Development

I have pretty good skills in PHP , Mysql and Javascript for a junior developer. If I wanted to try my hand as Android Development do you think I might find it tough ? Also what new languages would I ...

热门标签