So we have a reference set of 3D points (let s call it R), and many other sets of 3D points (let s call that set of sets of data points P, and each data set in that Pi).
任务是将一些Pi和R的数据点的电子滑坡距离降至最低的Pi。 我看到的是:
- For each point in Pi, compare to each point in R and find the minimum difference between two points.
- Sum up these minimum distances to reach the minimum total "difference" between Pi and R.
- The answer Pi is the one with the smallest difference.
但是,这很奇怪,因为这意味着从实质上看R和P各个点之间的距离,后者可能是数千或几百万。 我肯定能够做得好于此。
我在马特拉布工作,我没有这样做。
什么是更好的算法? 是否有完善的数据结构? (例如K-D树?)