The model in linear regression is $y = omega^T x + e$ , where x, y, e represent the feature, the target and the noise, respecively.
p(y >, omega)常常被称为线性回归模式的可能性。
In naive Bayesian algorithm, p(x|y) is called likelihood function.
这两种可能性功能混淆不清,因为X和x的顺序正相反。 如何解释这两个可能性? 感谢。