English 中文(简体)
快速4x4矩阵 C倍增
原标题:Fast 4x4 Matrix Multiplication in C
  • 时间:2009-11-04 14:15:46
  •  标签:

我正试图找到一个最佳的C或议会执行一个职能,使两个4x4矩阵相互连接。 该平台是ARM6或ARM7基调或iPod。

目前,我采用一种相当的标准做法——只是一种微小的循环。

#define O(y,x) (y + (x<<2))

static inline void Matrix4x4MultiplyBy4x4 (float *src1, float *src2, float *dest)
{
    *(dest+O(0,0)) = (*(src1+O(0,0)) * *(src2+O(0,0))) + (*(src1+O(0,1)) * *(src2+O(1,0))) + (*(src1+O(0,2)) * *(src2+O(2,0))) + (*(src1+O(0,3)) * *(src2+O(3,0))); 
    *(dest+O(0,1)) = (*(src1+O(0,0)) * *(src2+O(0,1))) + (*(src1+O(0,1)) * *(src2+O(1,1))) + (*(src1+O(0,2)) * *(src2+O(2,1))) + (*(src1+O(0,3)) * *(src2+O(3,1))); 
    *(dest+O(0,2)) = (*(src1+O(0,0)) * *(src2+O(0,2))) + (*(src1+O(0,1)) * *(src2+O(1,2))) + (*(src1+O(0,2)) * *(src2+O(2,2))) + (*(src1+O(0,3)) * *(src2+O(3,2))); 
    *(dest+O(0,3)) = (*(src1+O(0,0)) * *(src2+O(0,3))) + (*(src1+O(0,1)) * *(src2+O(1,3))) + (*(src1+O(0,2)) * *(src2+O(2,3))) + (*(src1+O(0,3)) * *(src2+O(3,3))); 
    *(dest+O(1,0)) = (*(src1+O(1,0)) * *(src2+O(0,0))) + (*(src1+O(1,1)) * *(src2+O(1,0))) + (*(src1+O(1,2)) * *(src2+O(2,0))) + (*(src1+O(1,3)) * *(src2+O(3,0))); 
    *(dest+O(1,1)) = (*(src1+O(1,0)) * *(src2+O(0,1))) + (*(src1+O(1,1)) * *(src2+O(1,1))) + (*(src1+O(1,2)) * *(src2+O(2,1))) + (*(src1+O(1,3)) * *(src2+O(3,1))); 
    *(dest+O(1,2)) = (*(src1+O(1,0)) * *(src2+O(0,2))) + (*(src1+O(1,1)) * *(src2+O(1,2))) + (*(src1+O(1,2)) * *(src2+O(2,2))) + (*(src1+O(1,3)) * *(src2+O(3,2))); 
    *(dest+O(1,3)) = (*(src1+O(1,0)) * *(src2+O(0,3))) + (*(src1+O(1,1)) * *(src2+O(1,3))) + (*(src1+O(1,2)) * *(src2+O(2,3))) + (*(src1+O(1,3)) * *(src2+O(3,3))); 
    *(dest+O(2,0)) = (*(src1+O(2,0)) * *(src2+O(0,0))) + (*(src1+O(2,1)) * *(src2+O(1,0))) + (*(src1+O(2,2)) * *(src2+O(2,0))) + (*(src1+O(2,3)) * *(src2+O(3,0))); 
    *(dest+O(2,1)) = (*(src1+O(2,0)) * *(src2+O(0,1))) + (*(src1+O(2,1)) * *(src2+O(1,1))) + (*(src1+O(2,2)) * *(src2+O(2,1))) + (*(src1+O(2,3)) * *(src2+O(3,1))); 
    *(dest+O(2,2)) = (*(src1+O(2,0)) * *(src2+O(0,2))) + (*(src1+O(2,1)) * *(src2+O(1,2))) + (*(src1+O(2,2)) * *(src2+O(2,2))) + (*(src1+O(2,3)) * *(src2+O(3,2))); 
    *(dest+O(2,3)) = (*(src1+O(2,0)) * *(src2+O(0,3))) + (*(src1+O(2,1)) * *(src2+O(1,3))) + (*(src1+O(2,2)) * *(src2+O(2,3))) + (*(src1+O(2,3)) * *(src2+O(3,3))); 
    *(dest+O(3,0)) = (*(src1+O(3,0)) * *(src2+O(0,0))) + (*(src1+O(3,1)) * *(src2+O(1,0))) + (*(src1+O(3,2)) * *(src2+O(2,0))) + (*(src1+O(3,3)) * *(src2+O(3,0))); 
    *(dest+O(3,1)) = (*(src1+O(3,0)) * *(src2+O(0,1))) + (*(src1+O(3,1)) * *(src2+O(1,1))) + (*(src1+O(3,2)) * *(src2+O(2,1))) + (*(src1+O(3,3)) * *(src2+O(3,1))); 
    *(dest+O(3,2)) = (*(src1+O(3,0)) * *(src2+O(0,2))) + (*(src1+O(3,1)) * *(src2+O(1,2))) + (*(src1+O(3,2)) * *(src2+O(2,2))) + (*(src1+O(3,3)) * *(src2+O(3,2))); 
    *(dest+O(3,3)) = (*(src1+O(3,0)) * *(src2+O(0,3))) + (*(src1+O(3,1)) * *(src2+O(1,3))) + (*(src1+O(3,2)) * *(src2+O(2,3))) + (*(src1+O(3,3)) * *(src2+O(3,3))); 
};

采用Salssen- 或手工业铜-Winograd算法,我是否从中受益?

最佳回答

无,Strassen或铜匠-Winograd算法在这方面会起很大的作用。 他们开始只为较大的矩阵付费。

如果您的矩阵倍增实际上是一种瓶颈,那么你就可以使用近地静止轨道卫星导航卫星系统的指示重新计算算法。 这只会帮助ARMv7,因为ARMv6没有这种延期。

d 我预计,对汇编的C-代码而言,系数3会加快。

EDIT:You can found a nice implementation in ARM-NEON here:

对于您的C-code,你可以做两件事,以加快法典的步伐:

  1. 投入职能。 你的矩阵多重复产生了相当的编码范围,因为它没有发展,而阿拉伯同行审议机制只有非常细微的教程。 过度倾斜会使你的法典放慢,因为万国邮联将忙于将法典装入海滩而不是加以执行。

  2. 利用限制关键词告诉汇编者,源头和目的地的点人不会重复记忆。 目前,编辑不得不在撰写结果时从记忆中重载所有来源价值,因为它必须假定来源和目的地可能重叠,甚至指同一种记忆。

问题回答

Just。 我想知道,为什么人们仍然自愿放弃他们的法典? C已经难以读到,无需添加。

static inline void Matrix4x4MultiplyBy4x4 (float src1[4][4], float src2[4][4], float dest[4][4])
{
dest[0][0] = src1[0][0] * src2[0][0] + src1[0][1] * src2[1][0] + src1[0][2] * src2[2][0] + src1[0][3] * src2[3][0]; 
dest[0][1] = src1[0][0] * src2[0][1] + src1[0][1] * src2[1][1] + src1[0][2] * src2[2][1] + src1[0][3] * src2[3][1]; 
dest[0][2] = src1[0][0] * src2[0][2] + src1[0][1] * src2[1][2] + src1[0][2] * src2[2][2] + src1[0][3] * src2[3][2]; 
dest[0][3] = src1[0][0] * src2[0][3] + src1[0][1] * src2[1][3] + src1[0][2] * src2[2][3] + src1[0][3] * src2[3][3]; 
dest[1][0] = src1[1][0] * src2[0][0] + src1[1][1] * src2[1][0] + src1[1][2] * src2[2][0] + src1[1][3] * src2[3][0]; 
dest[1][1] = src1[1][0] * src2[0][1] + src1[1][1] * src2[1][1] + src1[1][2] * src2[2][1] + src1[1][3] * src2[3][1]; 
dest[1][2] = src1[1][0] * src2[0][2] + src1[1][1] * src2[1][2] + src1[1][2] * src2[2][2] + src1[1][3] * src2[3][2]; 
dest[1][3] = src1[1][0] * src2[0][3] + src1[1][1] * src2[1][3] + src1[1][2] * src2[2][3] + src1[1][3] * src2[3][3]; 
dest[2][0] = src1[2][0] * src2[0][0] + src1[2][1] * src2[1][0] + src1[2][2] * src2[2][0] + src1[2][3] * src2[3][0]; 
dest[2][1] = src1[2][0] * src2[0][1] + src1[2][1] * src2[1][1] + src1[2][2] * src2[2][1] + src1[2][3] * src2[3][1]; 
dest[2][2] = src1[2][0] * src2[0][2] + src1[2][1] * src2[1][2] + src1[2][2] * src2[2][2] + src1[2][3] * src2[3][2]; 
dest[2][3] = src1[2][0] * src2[0][3] + src1[2][1] * src2[1][3] + src1[2][2] * src2[2][3] + src1[2][3] * src2[3][3]; 
dest[3][0] = src1[3][0] * src2[0][0] + src1[3][1] * src2[1][0] + src1[3][2] * src2[2][0] + src1[3][3] * src2[3][0]; 
dest[3][1] = src1[3][0] * src2[0][1] + src1[3][1] * src2[1][1] + src1[3][2] * src2[2][1] + src1[3][3] * src2[3][1]; 
dest[3][2] = src1[3][0] * src2[0][2] + src1[3][1] * src2[1][2] + src1[3][2] * src2[2][2] + src1[3][3] * src2[3][2]; 
dest[3][3] = src1[3][0] * src2[0][3] + src1[3][1] * src2[1][3] + src1[3][2] * src2[2][3] + src1[3][3] * src2[3][3]; 
};

你们是否确信,你的不成文法比明确的 lo法要快? 更清楚的是,汇编者通常比从事最佳工作的人好!

事实上,与一系列“不相关的”声明相比,我更有机会由汇编者自动通过一份完整的书面文件发出SIMD指示。

您还可以在申辩声明中具体说明大体大小。 然后,你可以使用普通的 br子来获取这些要素,这也可以成为汇编者实现选择的好屏障。

这些武断的矩阵是不是,还是有任何不对称? 如果是的话,这些金属常常会被用来改进性能(例如,在轮换矩阵中)。

此外,我同意上文的段落,并将进行一些时间测试,以核实你的手头编码速度快于最佳汇编者能够创建的。 至少,你可以简化你的法典。

Paul

你完全没有发展的传统产品很可能很快。

你的矩阵太小,无法克服管理传统形式的S Strassen多重复的过度压力,具有明确的指数和分治法;你可能对优化这一间接费用产生任何影响。

但是,如果你希望很快的话,我会使用SIMD指令。 我感到惊讶的是,阿拉伯投资者联盟这些日子没有。 如果是的话,你就可以在单项指示中管理浏览/col中的所有产品;如果SIMD是8大范围的话,你就可以在一份指示中管理2<>>>> /em> row/column multiplies。 为达到这一指示而设置歌舞厅可能需要一些跳板;SIMD指令将易于收看你的行文(邻近的数值),但不会 pick上一栏(非毗连)。 它可以作出一些努力,将产品总和计算在一行/栏中。





相关问题