English 中文(简体)
Equality Test for Derived Classes in C++ [duplicate]
原标题:
This question already has answers here:
Closed 13 years ago.

Possible Duplicate:
What’s the right way to overload operator== for a class hierarchy?

In C++, how can derived classes override the base class equality test in a meaningful way?

For example, say I have a base class A. Classes B and C derive from A. Now given two pointers to two A objects, can I test if they are equal (including any subclass data)?

class A {
    public: int data;
};

class B : public A {
    public: float more_data; bool something_else;
};

class C : public A {
    public: double more_data;
};


    A* one = new B;
    A* two = new B;
    A* three = new C;

    //How can I test if one, two, or three are equal
    //including any derived class data?

Is there a clean way of doing it? What s my best bet?

Thanks!

最佳回答

I remember reading a succinct description of the public-non-virtual/non-public-virtual idiom and its advantages, but not where. This wikibook has an okay description.

Here is how you apply it to op==:

struct A {
  virtual ~A() {}

  int a;

  friend
  bool operator==(A const& lhs, A const& rhs) {
    return lhs.equal_to(rhs);
  }
  // http://en.wikipedia.org/wiki/Barton-Nackman_trick
  // used in a simplified form here

protected:
  virtual bool equal_to(A const& other) const {
    return a == other.a;
  }
};

struct B : A {
  int b;

protected:
  virtual bool equal_to(A const& other) const {
    if (B const* p = dynamic_cast<B const*>(&other)) {
      return A::equal_to(other) && b == p->b;
    }
    else {
      return false;
    }
  }
};

struct C : A {
  int c;

protected:
  virtual bool equal_to(A const& other) const {
    if (C const* p = dynamic_cast<C const*>(&other)) {
      return A::equal_to(other) && c == p->c;
    }
    else {
      return false;
    }
  }
};
问题回答

Can different derived classes make equal objects?

If so: double dispatch is an option: it does need overloading in the base class, so you will have dependencies

If not: a solution is in the operator==() to check the typeid and return false if they re different. Otherwise call a private equal() function in which the derived class can do a static_cast and compare.

bool base::operator==(const base& other) const
{
  if (typeid(*this) != typeid(other)) return false;
  return equal(other);
}

bool derived::equal(const base& other) const
{
  derived& derOther = static_cast<derived&>(other);
  // compare derOther with *this
  return true;  // there is nothing to compare
}

This avoids type-checks in all derived classes

One way of doing this is to use the virtual operator== which takes the base class object as the parameter so that it works properly with different derived objects. However, you need to make this function pure virtual so as to force all the derived objects to implement it. So you will not be able instantiate the base class. For example:

class A
{
public:
    virtual ~A(){}

    //A virtual operator for comparison
    virtual bool operator==(const A& a) = 0;

protected:
    bool compareBase(const A& a);

private:
    int m_data;
};

bool A::compareBase(const A &a)
{
    return m_data == a.m_data;
}

class B1 : public A
{
public:

    //Override the base class
    bool operator==(const A& a);

private:
    bool compare(const B1* pB)
    {
        if(compareBase(*pB))
        {
            //Code for compare
            return true;
        }

        return false;
    }
};

bool B1::operator ==(const A &a)
{
    //Make sure that the passed type is same
    const B1* pB = dynamic_cast<const B1*>(&a);
    if(pB )
    {
        return compare(pB);
    }

    return false;
}
//Similarly implement for B2

If you don t care about comparisons of type A to type B, or B to C, etc. then you can simply implement an overloaded equality operator for each class:

class A {
    public: int data;

    bool operator==(const A& rhs) {
        return (data == rhs.data);
    }
};
class B : public A {
    public: float more_data; bool something_else;

    bool operator==(const B& rhs) {
        return (A::operator==( data ) &&
                more_data == rhs.more_data &&
                something_else == rhs.something_else);
    }
};

That s dangerous though, because if you derive a new class D from B or C, you re going to have problems.

Otherwise you need to implement some comparators with a lot of dynamic_cast<>-ing to really do it right. Alternatively you could implement a function to create a hash code for each object and leverage that, e.g.

class A {
    public: int data;

    virtual long getHashCode() const {
        // compute something here for object type A
    }

    // virtual here just in case you need to overload it in B or C
    virtual bool equals( const A& obj ) const {
        return (typeid(*this) == typeid(obj) &&
                getHashCode() == obj->getHashCode());
    }
};

class B : public A {
    public: float more_data; bool something_else;

    virtual long getHashCode() const {
        // compute something here for object type B
    }
};

class C : public A {
    public: double more_data;

    virtual long getHashCode() const {
        // compute something here for object type C
    }
};

If you incorporate the object s type into the hash code in some fashion (not shown above) then you can also dispense with the silly typeid() comparisons above.

If you don t mind the base class referring to the sub-classes then double-dispatch:

#include <iostream>

class B;
class C;

class A
{
public:
    int data;

    virtual bool equals (const A* rhs) const
    {
        std::cout << " A==A ";
        return data == rhs->data;
    }

    virtual bool equals (const B* rhs) const {return false;}
    virtual bool equals (const C* rhs) const {return false;}
};

class B : public A
{
public:
    float some_data;

    virtual bool equals (const A* rhs) const
    {
        return rhs->equals (this);
    }

    virtual bool equals (const B* rhs) const
    {
        std::cout << " B==B ";
        return A::equals (static_cast<const A*> (rhs)) && some_data == rhs->some_data;
    }
};

class C : public A
{
public:
    double more_data;

    virtual bool equals (const A* rhs) const
    {
        return rhs->equals (this);
    }

    virtual bool equals (const C* rhs) const
    {
        std::cout << " C==C ";
        return A::equals (static_cast<const A*> (rhs)) && more_data == rhs->more_data;
    }
};

bool operator== (const A& lhs, const A& rhs)
{
    return lhs.equals (&rhs);
}

int main (int argc, char* argv[])
{

    A* one = new B;
    A* two = new B;
    A* three = new C;

    std::cout << (*one == *one) << std::endl;
    std::cout << (*one == *two) << std::endl;
    std::cout << (*one == *three) << std::endl;
    std::cout << (*three == *three) << std::endl;

    return 0;
}

Does it without requiring dynamic_casts.





相关问题
Undefined reference

I m getting this linker error. I know a way around it, but it s bugging me because another part of the project s linking fine and it s designed almost identically. First, I have namespace LCD. Then I ...

C++ Equivalent of Tidy

Is there an equivalent to tidy for HTML code for C++? I have searched on the internet, but I find nothing but C++ wrappers for tidy, etc... I think the keyword tidy is what has me hung up. I am ...

Template Classes in C++ ... a required skill set?

I m new to C++ and am wondering how much time I should invest in learning how to implement template classes. Are they widely used in industry, or is this something I should move through quickly?

Print possible strings created from a Number

Given a 10 digit Telephone Number, we have to print all possible strings created from that. The mapping of the numbers is the one as exactly on a phone s keypad. i.e. for 1,0-> No Letter for 2->...

typedef ing STL wstring

Why is it when i do the following i get errors when relating to with wchar_t? namespace Foo { typedef std::wstring String; } Now i declare all my strings as Foo::String through out the program, ...

C# Marshal / Pinvoke CBitmap?

I cannot figure out how to marshal a C++ CBitmap to a C# Bitmap or Image class. My import looks like this: [DllImport(@"test.dll", CharSet = CharSet.Unicode)] public static extern IntPtr ...

Window iconification status via Xlib

Is it possible to check with the means of pure X11/Xlib only whether the given window is iconified/minimized, and, if it is, how?

热门标签