A Bézier curve has not only a start and end point but also control points that guide the shape of the curve. In the DynApi demo you linked, the end points are marked in yellow, and the control points are marked in red.
Your path will be a sequence of Bézier curves, connected end-to-end.
So let s take your pseudocode, but we ll treat all points that do not have a .time property to be control points.
function Path(points) {
this.points = points;
// Sanity check.
if (points[0].time == undefined || points[points.length - 1].time == undefined)
throw new Error("all control points must be between two real points");
}
Path.prototype.getXYAtTime = function (t) {
var points = this.points;
// First, see if t is out of range.
if (t < points[0].time)
return points[0];
if (t > points[points.length - 1].time)
return points[points.length - 1];
// OK, t is in range. Find out which Bezier curve we re in.
//
// Specifically we want start and stop to be the indexes of two points
// that each have a .time property, bracketing the current time t; and
// all the points in between start and stop should be control points.
//
var start = 0, stop = points.length - 1;
for (var i = 1; i < points.length; i++) {
var p = points[i];
if (t < p.time) {
stop = i;
break;
}
if (p.time != undefined)
start = i;
}
var n = stop - start;
// Adjust t to be in the range [0, 1).
var t0 = points[start].time, t1 = points[stop].time;
t = (t - t0) / (t1 - t0);
var tInv = 1 - t;
// Now calculate the current position in the curve.
// Wikipedia says this is:
// sum for i = 0 to n of (n C i * (1 - t) ^ (n - i) * t ^ i * P[i])
//
var x = 0, y = 0;
for (var i = 0; i <= n; i++) {
var p = points[start + i];
var c = nCr(n, i) * Math.pow(1 - t, n - i) * Math.pow(t, i);
x += c * p.x;
y += c * p.y;
}
return {x: x, y: y};
}
// The number of k-combinations of a set of size n.
function nCr(n, k) {
var z = 1;
for (var i = 1; i <= k; i++)
z *= (n + 1 - i) / i;
return z;
}
So that s the math part done. It s up to you to hook it up to canvas and make it go.
Here s how you call that method:
// Here s a Path consisting of a single Bezier curve.
var path = new Path([
{x: 200, y: 150, time: 0}, // start point
{x: 200, y: 500}, // 2 control points
{x: 250, y: 100},
{x: 500, y: 300, time: 50} // end point
]);
var p = path.getXYAtTime(2.718);
alert(p.x + ", " + p.y);