English 中文(简体)
VC++ SSE intrinsic optimisation weirdness
原标题:

I am performing a scattered read of 8-bit data from a file (De-Interleaving a 64 channel wave file). I am then combining them to be a single stream of bytes. The problem I m having is with my re-construction of the data to write out.

Basically I m reading in 16 bytes and then building them into a single __m128i variable and then using _mm_stream_ps to write the value back out to memory. However I have some odd performance results.

In my first scheme I use the _mm_set_epi8 intrinsic to set my __m128i as follows:

    const __m128i packedSamples = _mm_set_epi8( sample15,   sample14,   sample13,   sample12,   sample11,   sample10,   sample9,    sample8,
                                                sample7,    sample6,    sample5,    sample4,    sample3,    sample2,    sample1,    sample0 );

Basically I leave it all up to the compiler to decide how to optimise it to give best performance. This gives WORST performance. MY test runs in ~0.195 seconds.

Second I tried to merge down by using 4 _mm_set_epi32 instructions and then packing them down:

    const __m128i samples0      = _mm_set_epi32( sample3, sample2, sample1, sample0 );
    const __m128i samples1      = _mm_set_epi32( sample7, sample6, sample5, sample4 );
    const __m128i samples2      = _mm_set_epi32( sample11, sample10, sample9, sample8 );
    const __m128i samples3      = _mm_set_epi32( sample15, sample14, sample13, sample12 );

    const __m128i packedSamples0    = _mm_packs_epi32( samples0, samples1 );
    const __m128i packedSamples1    = _mm_packs_epi32( samples2, samples3 );
    const __m128i packedSamples     = _mm_packus_epi16( packedSamples0, packedSamples1 );

This does improve performance somewhat. My test now runs in ~0.15 seconds. Seems counter-intuitive that performance would improve by doing this as I assume this is exactly what _mm_set_epi8 is doing anyway ...

My final attempt was to use a bit of code I have from making four CCs the old fashioned way (with shifts and ors) and then putting them in an __m128i using a single _mm_set_epi32.

    const GCui32 samples0       = MakeFourCC( sample0, sample1, sample2, sample3 );
    const GCui32 samples1       = MakeFourCC( sample4, sample5, sample6, sample7 );
    const GCui32 samples2       = MakeFourCC( sample8, sample9, sample10, sample11 );
    const GCui32 samples3       = MakeFourCC( sample12, sample13, sample14, sample15 );
    const __m128i packedSamples = _mm_set_epi32( samples3, samples2, samples1, samples0 );

This gives even BETTER performance. Taking ~0.135 seconds to run my test. I m really starting to get confused.

So I tried a simple read byte write byte system and that is ever-so-slightly faster than even the last method.

So what is going on? This all seems counter-intuitive to me.

I ve considered the idea that the delays are occuring on the _mm_stream_ps because I m supplying data too quickly but then I would to get exactly the same results out whatever I do. Is it possible that the first 2 methods mean that the 16 loads can t get distributed through the loop to hide latency? If so why is this? Surely an intrinsic allows the compiler to make optimisations as and where it pleases .. i thought that was the whole point ... Also surely performing 16 reads and 16 writes will be much slower than 16 reads and 1 write with a bunch of SSE juggling instructions ... After all its the reads and writes that are the slow bit!

Anyone with any ideas whats going on will be much appreciated! :D

Edit: Further to the comment below I stopped pre-loading the bytes as constants and changedit to this:

    const __m128i samples0      = _mm_set_epi32( *(pSamples + channelStep3), *(pSamples + channelStep2), *(pSamples + channelStep1), *(pSamples + channelStep0) );
    pSamples    += channelStep4;
    const __m128i samples1      = _mm_set_epi32( *(pSamples + channelStep3), *(pSamples + channelStep2), *(pSamples + channelStep1), *(pSamples + channelStep0) );
    pSamples    += channelStep4;
    const __m128i samples2      = _mm_set_epi32( *(pSamples + channelStep3), *(pSamples + channelStep2), *(pSamples + channelStep1), *(pSamples + channelStep0) );
    pSamples    += channelStep4;
    const __m128i samples3      = _mm_set_epi32( *(pSamples + channelStep3), *(pSamples + channelStep2), *(pSamples + channelStep1), *(pSamples + channelStep0) );
    pSamples    += channelStep4;

    const __m128i packedSamples0    = _mm_packs_epi32( samples0, samples1 );
    const __m128i packedSamples1    = _mm_packs_epi32( samples2, samples3 );
    const __m128i packedSamples     = _mm_packus_epi16( packedSamples0, packedSamples1 );

and this improved performance to ~0.143 seconds. Sitll not as good as the straight C implementation ...

Edit Again: The best performance I m getting thus far is

    // Load the samples.
    const GCui8 sample0     = *(pSamples + channelStep0);
    const GCui8 sample1     = *(pSamples + channelStep1);
    const GCui8 sample2     = *(pSamples + channelStep2);
    const GCui8 sample3     = *(pSamples + channelStep3);

    const GCui32 samples0   = Build32( sample0, sample1, sample2, sample3 );
    pSamples += channelStep4;

    const GCui8 sample4     = *(pSamples + channelStep0);
    const GCui8 sample5     = *(pSamples + channelStep1);
    const GCui8 sample6     = *(pSamples + channelStep2);
    const GCui8 sample7     = *(pSamples + channelStep3);

    const GCui32 samples1   = Build32( sample4, sample5, sample6, sample7 );
    pSamples += channelStep4;

    // Load the samples.
    const GCui8 sample8     = *(pSamples + channelStep0);
    const GCui8 sample9     = *(pSamples + channelStep1);
    const GCui8 sample10    = *(pSamples + channelStep2);
    const GCui8 sample11    = *(pSamples + channelStep3);

    const GCui32 samples2       = Build32( sample8, sample9, sample10, sample11 );
    pSamples += channelStep4;

    const GCui8 sample12    = *(pSamples + channelStep0);
    const GCui8 sample13    = *(pSamples + channelStep1);
    const GCui8 sample14    = *(pSamples + channelStep2);
    const GCui8 sample15    = *(pSamples + channelStep3);

    const GCui32 samples3   = Build32( sample12, sample13, sample14, sample15 );
    pSamples += channelStep4;

    const __m128i packedSamples = _mm_set_epi32( samples3, samples2, samples1, samples0 );

    _mm_stream_ps( pWrite + 0,  *(__m128*)&packedSamples ); 

This gives me processing in ~0.095 seconds which is considerably better. I don t appear to be able to get close with SSE though ... I m still confused by that but .. ho hum.

最佳回答

Perhaps the compiler is trying to put all the arguments to the intrinsic into registers at once. You don t want to access that many variables at once without organizing them.

Rather than declare a separate identifier for each sample, try putting them into a char[16]. The compiler will promote the 16 values to registers as it sees fit, as long as you don t take the address of anything within the array. You can add an __aligned__ tag (or whatever VC++ uses) and maybe avoid the intrinsic altogether. Otherwise, calling the intrinsic with ( sample[15], sample[14], sample[13] … sample[0] ) should make the compiler s job easier or at least do no harm.


Edit: I m pretty sure you re fighting a register spill but that suggestion will probably just store the bytes individually, which isn t what you want. I think my advice is to interleave your final attempt (using MakeFourCC) with the read operations, to make sure it s scheduled correctly and with no round-trips to the stack. Of course, inspection of object code is the best way to ensure that.

Essentially, you are streaming data into the register file and then streaming it back out. You don t want to overload it before it s time to flush the data.

问题回答

VS is notoriously bad at optimizing intrinsics. Especially moving data from and to SSE registers. The intrinsics itself are used pretty well however ... .

What you see is that it is trying to fill the SSE register with this monster :

00AA100C  movzx       ecx,byte ptr [esp+0Fh]  
00AA1011  movzx       edx,byte ptr [esp+0Fh]  
00AA1016  movzx       eax,byte ptr [esp+0Fh]  
00AA101B  movd        xmm0,eax  
00AA101F  movzx       eax,byte ptr [esp+0Fh]  
00AA1024  movd        xmm2,edx  
00AA1028  movzx       edx,byte ptr [esp+0Fh]  
00AA102D  movd        xmm1,ecx  
00AA1031  movzx       ecx,byte ptr [esp+0Fh]  
00AA1036  movd        xmm4,ecx  
00AA103A  movzx       ecx,byte ptr [esp+0Fh]  
00AA103F  movd        xmm5,edx  
00AA1043  movzx       edx,byte ptr [esp+0Fh]  
00AA1048  movd        xmm3,eax  
00AA104C  movzx       eax,byte ptr [esp+0Fh]  
00AA1051  movdqa      xmmword ptr [esp+60h],xmm0  
00AA1057  movd        xmm0,edx  
00AA105B  movzx       edx,byte ptr [esp+0Fh]  
00AA1060  movd        xmm6,eax  
00AA1064  movzx       eax,byte ptr [esp+0Fh]  
00AA1069  movd        xmm7,ecx  
00AA106D  movzx       ecx,byte ptr [esp+0Fh]  
00AA1072  movdqa      xmmword ptr [esp+20h],xmm4  
00AA1078  movdqa      xmmword ptr [esp+80h],xmm0  
00AA1081  movd        xmm4,ecx  
00AA1085  movzx       ecx,byte ptr [esp+0Fh]  
00AA108A  movdqa      xmmword ptr [esp+70h],xmm2  
00AA1090  movd        xmm0,eax  
00AA1094  movzx       eax,byte ptr [esp+0Fh]  
00AA1099  movdqa      xmmword ptr [esp+10h],xmm4  
00AA109F  movdqa      xmmword ptr [esp+50h],xmm6  
00AA10A5  movd        xmm2,edx  
00AA10A9  movzx       edx,byte ptr [esp+0Fh]  
00AA10AE  movd        xmm4,eax  
00AA10B2  movzx       eax,byte ptr [esp+0Fh]  
00AA10B7  movd        xmm6,edx  
00AA10BB  punpcklbw   xmm0,xmm1  
00AA10BF  punpcklbw   xmm2,xmm3  
00AA10C3  movdqa      xmm3,xmmword ptr [esp+80h]  
00AA10CC  movdqa      xmmword ptr [esp+40h],xmm4  
00AA10D2  movd        xmm4,ecx  
00AA10D6  movdqa      xmmword ptr [esp+30h],xmm6  
00AA10DC  movdqa      xmm1,xmmword ptr [esp+30h]  
00AA10E2  movd        xmm6,eax  
00AA10E6  punpcklbw   xmm4,xmm5  
00AA10EA  punpcklbw   xmm4,xmm0  
00AA10EE  movdqa      xmm0,xmmword ptr [esp+50h]  
00AA10F4  punpcklbw   xmm1,xmm0  
00AA10F8  movdqa      xmm0,xmmword ptr [esp+70h]  
00AA10FE  punpcklbw   xmm6,xmm7  
00AA1102  punpcklbw   xmm6,xmm2  
00AA1106  movdqa      xmm2,xmmword ptr [esp+10h]  
00AA110C  punpcklbw   xmm2,xmm0  
00AA1110  movdqa      xmm0,xmmword ptr [esp+20h]  
00AA1116  punpcklbw   xmm1,xmm2  
00AA111A  movdqa      xmm2,xmmword ptr [esp+40h]  
00AA1120  punpcklbw   xmm2,xmm0  
00AA1124  movdqa      xmm0,xmmword ptr [esp+60h]  
00AA112A  punpcklbw   xmm3,xmm0  
00AA112E  punpcklbw   xmm2,xmm3  
00AA1132  punpcklbw   xmm6,xmm4  
00AA1136  punpcklbw   xmm1,xmm2  
00AA113A  punpcklbw   xmm6,xmm1  

This works much better and (should) easily be faster :

__declspec(align(16)) BYTE arr[16] = { sample15, sample14, sample13, sample12, sample11, sample10, sample9, sample8, sample7, sample6, sample5, sample4, sample3, sample2, sample1, sample0 };

__m128i packedSamples = _mm_load_si128( (__m128i*)arr );

Build my own test-bed :

void    f()
{
    const int steps = 1000000;
    BYTE* pDest = new BYTE[steps*16+16];
    pDest += 16 - ((ULONG_PTR)pDest % 16);
    BYTE* pSrc = new BYTE[steps*16*16];

    const int channelStep0 = 0;
    const int channelStep1 = 1;
    const int channelStep2 = 2;
    const int channelStep3 = 3;
    const int channelStep4 = 16;

    __int64 freq;
    QueryPerformanceFrequency( (LARGE_INTEGER*)&freq );
    __int64 start = 0, end;
    QueryPerformanceCounter( (LARGE_INTEGER*)&start );

    for( int step = 0; step < steps; ++step )
    {
        __declspec(align(16)) BYTE arr[16];
        for( int j = 0; j < 4; ++j )
        {
            //for( int i = 0; i < 4; ++i )
            {
                arr[0+j*4] = *(pSrc + channelStep0);
                arr[1+j*4] = *(pSrc + channelStep1);
                arr[2+j*4] = *(pSrc + channelStep2);
                arr[3+j*4] = *(pSrc + channelStep3);
            }
            pSrc += channelStep4;
        }

#if test1
// test 1 with C
        for( int i = 0; i < 16; ++i )
        {
            *(pDest + step * 16 + i) = arr[i];
        }
#else
// test 2 with SSE load/store    
        __m128i packedSamples = _mm_load_si128( (__m128i*)arr );
        _mm_stream_si128( ((__m128i*)pDest) + step, packedSamples );
#endif
    }

    QueryPerformanceCounter( (LARGE_INTEGER*)&end );

    printf( "%I64d", (end - start) * 1000 / freq );

}

For me test 2 is faster then test 1.

Do I do something wrong? Is this not the code you are using? What do I miss? Is this just for me?





相关问题
Undefined reference

I m getting this linker error. I know a way around it, but it s bugging me because another part of the project s linking fine and it s designed almost identically. First, I have namespace LCD. Then I ...

C++ Equivalent of Tidy

Is there an equivalent to tidy for HTML code for C++? I have searched on the internet, but I find nothing but C++ wrappers for tidy, etc... I think the keyword tidy is what has me hung up. I am ...

Template Classes in C++ ... a required skill set?

I m new to C++ and am wondering how much time I should invest in learning how to implement template classes. Are they widely used in industry, or is this something I should move through quickly?

Print possible strings created from a Number

Given a 10 digit Telephone Number, we have to print all possible strings created from that. The mapping of the numbers is the one as exactly on a phone s keypad. i.e. for 1,0-> No Letter for 2->...

typedef ing STL wstring

Why is it when i do the following i get errors when relating to with wchar_t? namespace Foo { typedef std::wstring String; } Now i declare all my strings as Foo::String through out the program, ...

C# Marshal / Pinvoke CBitmap?

I cannot figure out how to marshal a C++ CBitmap to a C# Bitmap or Image class. My import looks like this: [DllImport(@"test.dll", CharSet = CharSet.Unicode)] public static extern IntPtr ...

Window iconification status via Xlib

Is it possible to check with the means of pure X11/Xlib only whether the given window is iconified/minimized, and, if it is, how?

热门标签