English 中文(简体)
有谁知道一个我可以使用的好的基于Python的网络爬虫?
原标题:
  • 时间:2009-01-07 04:53:21
  •  标签:
Locked. This question and its answers are locked because the question is off-topic but has historical significance. It is not currently accepting new answers or interactions.

我对自己写一个爬虫感到半信半疑,但我现在时间不够。我看过维基百科上的开源爬虫列表,但我更喜欢使用Python编写。我意识到我可以直接使用维基页上的工具,并在Python中进行包装。如果有人对这些工具有任何建议,我很愿意听取。我已经通过其Web接口使用过Heritrix,但我发现它非常繁琐。我肯定不会在我的即将到来的项目中使用浏览器API。

提前感谢。此外,这是我第一个 Stack Overflow 的问题!

最佳回答
  • Mechanize is my favorite; great high-level browsing capabilities (super-simple form filling and submission).
  • Twill is a simple scripting language built on top of Mechanize
  • BeautifulSoup + urllib2 also works quite nicely.
  • Scrapy looks like an extremely promising project; it s new.
问题回答

使用Scrapy

这是一个基于Twisted的网络爬虫框架,仍在积极开发中,但已经可以使用。具有许多好处:

  • Built-in support for parsing HTML, XML, CSV, and Javascript
  • A media pipeline for scraping items with images (or any other media) and download the image files as well
  • Support for extending Scrapy by plugging your own functionality using middlewares, extensions, and pipelines
  • Wide range of built-in middlewares and extensions for handling of compression, cache, cookies, authentication, user-agent spoofing, robots.txt handling, statistics, crawl depth restriction, etc
  • Interactive scraping shell console, very useful for developing and debugging
  • Web management console for monitoring and controlling your bot
  • Telnet console for low-level access to the Scrapy process

通过在返回的HTML上使用XPath选择器,提取所有今天添加到mininova种子站的种子文件信息的示例代码:

class Torrent(ScrapedItem):
    pass

class MininovaSpider(CrawlSpider):
    domain_name =  mininova.org 
    start_urls = [ http://www.mininova.org/today ]
    rules = [Rule(RegexLinkExtractor(allow=[ /tor/d+ ]),  parse_torrent )]

    def parse_torrent(self, response):
        x = HtmlXPathSelector(response)
        torrent = Torrent()

        torrent.url = response.url
        torrent.name = x.x("//h1/text()").extract()
        torrent.description = x.x("//div[@id= description ]").extract()
        torrent.size = x.x("//div[@id= info-left ]/p[2]/text()[2]").extract()
        return [torrent]

请查看用Python编写的多线程网络爬虫HarvestMan,还要看一下spider.py模块。 HarvestMan spider.py

这里代码示例,可以构建一个简单的网络爬虫。

我使用过Ruya,觉得它相当不错。

我黑客攻击了上述脚本,加入了一个登录页面,因为我需要它来访问一个Drupal网站。 不太美观,但可能会帮助那里的某个人。

#!/usr/bin/python

import httplib2
import urllib
import urllib2
from cookielib import CookieJar
import sys
import re
from HTMLParser import HTMLParser

class miniHTMLParser( HTMLParser ):

  viewedQueue = []
  instQueue = []
  headers = {}
  opener = ""

  def get_next_link( self ):
    if self.instQueue == []:
      return   
    else:
      return self.instQueue.pop(0)


  def gethtmlfile( self, site, page ):
    try:
        url =  http:// +site+  +page
        response = self.opener.open(url)
        return response.read()
    except Exception, err:
        print " Error retrieving: "+page
        sys.stderr.write( ERROR: %s
  % str(err))
    return "" 

    return resppage

  def loginSite( self, site_url ):
    try:
    cj = CookieJar()
    self.opener = urllib2.build_opener(urllib2.HTTPCookieProcessor(cj))

    url =  http:// +site_url 
        params = { name :  customer_admin ,  pass :  customer_admin123 ,  opt :  Log in ,  form_build_id :  form-3560fb42948a06b01d063de48aa216ab ,  form_id : user_login_block }
    user_agent =  Mozilla/4.0 (compatible; MSIE 5.5; Windows NT) 
    self.headers = {  User-Agent  : user_agent }

    data = urllib.urlencode(params)
    response = self.opener.open(url, data)
    print "Logged in"
    return response.read() 

    except Exception, err:
    print " Error logging in"
    sys.stderr.write( ERROR: %s
  % str(err))

    return 1

  def handle_starttag( self, tag, attrs ):
    if tag ==  a :
      newstr = str(attrs[0][1])
      print newstr
      if re.search( http , newstr) == None:
        if re.search( mailto , newstr) == None:
          if re.search( # , newstr) == None:
            if (newstr in self.viewedQueue) == False:
              print "  adding", newstr
              self.instQueue.append( newstr )
              self.viewedQueue.append( newstr )
          else:
            print "  ignoring", newstr
        else:
          print "  ignoring", newstr
      else:
        print "  ignoring", newstr


def main():

  if len(sys.argv)!=3:
    print "usage is ./minispider.py site link"
    sys.exit(2)

  mySpider = miniHTMLParser()

  site = sys.argv[1]
  link = sys.argv[2]

  url_login_link = site+"/node?destination=node"
  print "
Logging in", url_login_link
  x = mySpider.loginSite( url_login_link )

  while link !=   :

    print "
Checking link ", link

    # Get the file from the site and link
    retfile = mySpider.gethtmlfile( site, link )

    # Feed the file into the HTML parser
    mySpider.feed(retfile)

    # Search the retfile here

    # Get the next link in level traversal order
    link = mySpider.get_next_link()

  mySpider.close()

  print "
done
"

if __name__ == "__main__":
  main()

相信我,没有什么比卷曲更好了。以下代码可以在Amazon EC2上以不到300秒的时间并行爬取10,000个网址。

注意:不要以如此高速攻击同一个域名。

#! /usr/bin/env python
# -*- coding: iso-8859-1 -*-
# vi:ts=4:et
# $Id: retriever-multi.py,v 1.29 2005/07/28 11:04:13 mfx Exp $

#
# Usage: python retriever-multi.py <file with URLs to fetch> [<# of
#          concurrent connections>]
#

import sys
import pycurl

# We should ignore SIGPIPE when using pycurl.NOSIGNAL - see
# the libcurl tutorial for more info.
try:
    import signal
    from signal import SIGPIPE, SIG_IGN
    signal.signal(signal.SIGPIPE, signal.SIG_IGN)
except ImportError:
    pass


# Get args
num_conn = 10
try:
    if sys.argv[1] == "-":
        urls = sys.stdin.readlines()
    else:
        urls = open(sys.argv[1]).readlines()
    if len(sys.argv) >= 3:
        num_conn = int(sys.argv[2])
except:
    print "Usage: %s <file with URLs to fetch> [<# of concurrent connections>]" % sys.argv[0]
    raise SystemExit


# Make a queue with (url, filename) tuples
queue = []
for url in urls:
    url = url.strip()
    if not url or url[0] == "#":
        continue
    filename = "doc_%03d.dat" % (len(queue) + 1)
    queue.append((url, filename))


# Check args
assert queue, "no URLs given"
num_urls = len(queue)
num_conn = min(num_conn, num_urls)
assert 1 <= num_conn <= 10000, "invalid number of concurrent connections"
print "PycURL %s (compiled against 0x%x)" % (pycurl.version, pycurl.COMPILE_LIBCURL_VERSION_NUM)
print "----- Getting", num_urls, "URLs using", num_conn, "connections -----"


# Pre-allocate a list of curl objects
m = pycurl.CurlMulti()
m.handles = []
for i in range(num_conn):
    c = pycurl.Curl()
    c.fp = None
    c.setopt(pycurl.FOLLOWLOCATION, 1)
    c.setopt(pycurl.MAXREDIRS, 5)
    c.setopt(pycurl.CONNECTTIMEOUT, 30)
    c.setopt(pycurl.TIMEOUT, 300)
    c.setopt(pycurl.NOSIGNAL, 1)
    m.handles.append(c)


# Main loop
freelist = m.handles[:]
num_processed = 0
while num_processed < num_urls:
    # If there is an url to process and a free curl object, add to multi stack
    while queue and freelist:
        url, filename = queue.pop(0)
        c = freelist.pop()
        c.fp = open(filename, "wb")
        c.setopt(pycurl.URL, url)
        c.setopt(pycurl.WRITEDATA, c.fp)
        m.add_handle(c)
        # store some info
        c.filename = filename
        c.url = url
    # Run the internal curl state machine for the multi stack
    while 1:
        ret, num_handles = m.perform()
        if ret != pycurl.E_CALL_MULTI_PERFORM:
            break
    # Check for curl objects which have terminated, and add them to the freelist
    while 1:
        num_q, ok_list, err_list = m.info_read()
        for c in ok_list:
            c.fp.close()
            c.fp = None
            m.remove_handle(c)
            print "Success:", c.filename, c.url, c.getinfo(pycurl.EFFECTIVE_URL)
            freelist.append(c)
        for c, errno, errmsg in err_list:
            c.fp.close()
            c.fp = None
            m.remove_handle(c)
            print "Failed: ", c.filename, c.url, errno, errmsg
            freelist.append(c)
        num_processed = num_processed + len(ok_list) + len(err_list)
        if num_q == 0:
            break
    # Currently no more I/O is pending, could do something in the meantime
    # (display a progress bar, etc.).
    # We just call select() to sleep until some more data is available.
    m.select(1.0)


# Cleanup
for c in m.handles:
    if c.fp is not None:
        c.fp.close()
        c.fp = None
    c.close()
m.close()

Another simple spider Uses BeautifulSoup and urllib2. Nothing too sophisticated, just reads all a href s builds a list and goes though it.

(Note: This is already in Chinese characters. However, if you meant to translate "pyspider.py" into Chinese, the translation would be "pyspider.py")





相关问题
热门标签