您所描述的矩阵实际上是一维向量,因此我假设您所称的inverse实际是transpose。这种情况下的计算非常简单:
Methods
// 1 row * 1 column
public static float scalarMultiplication (float[] m1, float[] m2) {
if (m1.length != m2.length)
throw new IllegalArgumentException("Vectors need to have the same length");
float m = 0;
for (int i=0; i<m1.length; i++)
m += (m1[i]*m2[i]);
return m;
}
// N rows * N columns
public static float[][] vectorMultiplication (float[] m1, float[] m2) {
if (m1.length != m2.length)
throw new IllegalArgumentException("Vectors need to have the same length");
float[][] m = new float[m1.length][m1.length];
for (int i=0; i<m1.length; i++)
for (int j=0; j<m1.length; j++)
m[i][j] = (m1[i]*m2[j]);
return m;
}
Test
float[] m1 = new float[16];
float[] m2 = new float[16];
for (int i=0; i<m1.length; i++) {
m1[i]=i;
m2[i]=i*i;
}
System.out.println ("Multiple is " + scalarMultiplication(m1, m2));
float[][] m = vectorMultiplication(m1, m2);
for (int i=0; i<m[0].length; i++) {
for (int j=0; j<m[0].length; j++) {
System.out.print (m[i][j] +" ");
}
System.out.println();
}
Output
Multiple is 14400.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 1.0 4.0 9.0 16.0 25.0 36.0 49.0 64.0 81.0 100.0 121.0 144.0 169.0 196.0 225.0
0.0 2.0 8.0 18.0 32.0 50.0 72.0 98.0 128.0 162.0 200.0 242.0 288.0 338.0 392.0 450.0
0.0 3.0 12.0 27.0 48.0 75.0 108.0 147.0 192.0 243.0 300.0 363.0 432.0 507.0 588.0 675.0
0.0 4.0 16.0 36.0 64.0 100.0 144.0 196.0 256.0 324.0 400.0 484.0 576.0 676.0 784.0 900.0
0.0 5.0 20.0 45.0 80.0 125.0 180.0 245.0 320.0 405.0 500.0 605.0 720.0 845.0 980.0 1125.0
0.0 6.0 24.0 54.0 96.0 150.0 216.0 294.0 384.0 486.0 600.0 726.0 864.0 1014.0 1176.0 1350.0
0.0 7.0 28.0 63.0 112.0 175.0 252.0 343.0 448.0 567.0 700.0 847.0 1008.0 1183.0 1372.0 1575.0
0.0 8.0 32.0 72.0 128.0 200.0 288.0 392.0 512.0 648.0 800.0 968.0 1152.0 1352.0 1568.0 1800.0
0.0 9.0 36.0 81.0 144.0 225.0 324.0 441.0 576.0 729.0 900.0 1089.0 1296.0 1521.0 1764.0 2025.0
0.0 10.0 40.0 90.0 160.0 250.0 360.0 490.0 640.0 810.0 1000.0 1210.0 1440.0 1690.0 1960.0 2250.0
0.0 11.0 44.0 99.0 176.0 275.0 396.0 539.0 704.0 891.0 1100.0 1331.0 1584.0 1859.0 2156.0 2475.0
0.0 12.0 48.0 108.0 192.0 300.0 432.0 588.0 768.0 972.0 1200.0 1452.0 1728.0 2028.0 2352.0 2700.0
0.0 13.0 52.0 117.0 208.0 325.0 468.0 637.0 832.0 1053.0 1300.0 1573.0 1872.0 2197.0 2548.0 2925.0
0.0 14.0 56.0 126.0 224.0 350.0 504.0 686.0 896.0 1134.0 1400.0 1694.0 2016.0 2366.0 2744.0 3150.0
0.0 15.0 60.0 135.0 240.0 375.0 540.0 735.0 960.0 1215.0 1500.0 1815.0 2160.0 2535.0 2940.0 3375.0