是否有办法比较两种面孔(可能与OpenCv),并取其同心? 我指的是在2个面孔之间,而不是在整个数据集上,应用一个表面识别算法,但。
问题在于,例如,Eigenfaces至少需要2个培训图像。
是否有办法比较两种面孔(可能与OpenCv),并取其同心? 我指的是在2个面孔之间,而不是在整个数据集上,应用一个表面识别算法,但。
问题在于,例如,Eigenfaces至少需要2个培训图像。
是的,你可以绝对使用外语。 培训毫无结果,你们的两面都比较了表面上的承认。 接受培训时,有100名学员。 然后,对您的两面(面面面1和面孔2)进行对比,在你的培训课堂上,每个面面面都有一个直观。 例如,面面面=[2 3 1 5..]* [eigFace1 eigface2 eigface3 eigface4...],面面面面两面。 我在以上例子中显示了这一矢量[2 3 1 5..],比较了您的两种面孔,即某种距离算法(无论它是滑坡距离还是其他一些距离度)。 如果某一门槛值内的距离相同,你可以说是相同的。 牢记的是,如果你使用面具、照明条件、规模、所有培训形象的背景以及你试图进行比较的面貌,都必须实现正常化。 眼睛、鼻子、口号也必须尽可能贴近。
Try to forget, that you compare faces. Find SURF keypoints for both photos, match their descriptors. As score of photo likeness use ratio of number of matched descriptors to number of all descriptors.
You can use compare function which is from openbr.Its give you matched percentage of two faces.
And it gives this values based on min, max, mean, stddev for both genuine and impostor.
I m trying to convert images taken from a capture (webcam) and do some processing on them with OpenCV, but I m having a difficult time.. When trying to convert the image to grayscale, the program ...
I want to smooth a histogram. Therefore I tried to smooth the internal matrix of cvHistogram. typedef struct CvHistogram { int type; CvArr* bins; float thresh[CV_MAX_DIM][2]; /* ...
Please tell me how to convert image into matrix of pixels and vice versa...using opencv??
I m looking for the fastest and more efficient method of detecting an object in a moving video. Things to note about this video: It is very grainy and low resolution, also both the background and ...
What s are some ways of testing complex data types such as video, images, music, etc. I m using TDD and wonder are there alternatives to "gold file" testing for rendering algorithms. I understand that ...
Here is my current code (language is Python): newFrameImage = cv.QueryFrame(webcam) newFrameImageFile = cv.SaveImage("temp.jpg",newFrameImage) wxImage = wx.Image("temp.jpg", wx.BITMAP_TYPE_ANY)....
Imagine I have the following: CvMat* mat = cvCreateMat(3,3,CV_16SC3) This is a 3x3 matrix of integers of channel 3. Now if you look at OpenCV documentation you will find the following as the ...
I m running a small research on face detection and comparison for my article. Currently, I m using rapid face detection based on haar like features based on OpenCV cascade (I ll implement learning ...