我修改了<代码>matchTemplate tutorial,以便你开始学习。 它基本上使用<代码>queue,以跟踪X顶端的对口点,随后将其全部划归。 希望会有助益!
#include <opencv2/core/core.hpp>
#include <opencv2/highgui/highgui.hpp>
#include <opencv2/imgproc/imgproc.hpp>
#include <iostream>
#include <vector>
#include <limits>
#include <queue>
using namespace cv;
using namespace std;
void maxLocs(const Mat& src, queue<Point>& dst, size_t size)
{
float maxValue = -1.0f * numeric_limits<float>::max();
float* srcData = reinterpret_cast<float*>(src.data);
for(int i = 0; i < src.rows; i++)
{
for(int j = 0; j < src.cols; j++)
{
if(srcData[i*src.cols + j] > maxValue)
{
maxValue = srcData[i*src.cols + j];
dst.push(Point(j, i));
// pop the smaller one off the end if we reach the size threshold.
if(dst.size() > size)
{
dst.pop();
}
}
}
}
}
/// Global Variables
Mat img; Mat templ; Mat result;
string image_window = "Source Image";
string result_window = "Result window";
int match_method;
int max_Trackbar = 5;
/// Function Headers
void MatchingMethod( int, void* );
int main(int argc, char* argv[])
{
/// Load image and template
img = imread( "dogs.jpg", 1 );
templ = imread( "dog_templ.jpg", 1 );
/// Create windows
namedWindow( image_window, CV_WINDOW_AUTOSIZE );
namedWindow( result_window, CV_WINDOW_AUTOSIZE );
/// Create Trackbar
string trackbar_label = "Method:
0: SQDIFF
1: SQDIFF NORMED
2: TM CCORR
3: TM CCORR NORMED
4: TM COEFF
5: TM COEFF NORMED";
createTrackbar( trackbar_label, image_window, &match_method, max_Trackbar, MatchingMethod );
MatchingMethod( 0, 0 );
waitKey(0);
return 0;
}
/**
* @function MatchingMethod
* @brief Trackbar callback
*/
void MatchingMethod( int, void* )
{
/// Source image to display
Mat img_display;
img.copyTo( img_display );
/// Create the result matrix
int result_cols = img.cols - templ.cols + 1;
int result_rows = img.rows - templ.rows + 1;
result.create( result_cols, result_rows, CV_32FC1 );
/// Do the Matching and Normalize
matchTemplate( img, templ, result, match_method );
normalize( result, result, 0, 1, NORM_MINMAX, -1, Mat() );
/// For SQDIFF and SQDIFF_NORMED, the best matches are lower values. For all the other methods, the higher the better
if( match_method == CV_TM_SQDIFF || match_method == CV_TM_SQDIFF_NORMED )
{
result = 1.0 - result;
}
// get the top 100 maximums...
queue<Point> locations;
maxLocs(result, locations, 100);
/// Show me what you got
while(!locations.empty())
{
Point matchLoc = locations.front();
rectangle( img_display, matchLoc, Point( matchLoc.x + templ.cols , matchLoc.y + templ.rows ), Scalar::all(0), 2, 8, 0 );
rectangle( result, matchLoc, Point( matchLoc.x + templ.cols , matchLoc.y + templ.rows ), Scalar::all(0), 2, 8, 0 );
locations.pop();
}
imshow( image_window, img_display );
imshow( result_window, result );
return;
}