下面,我看不出第二次发言与第四次发言有何不同。
我认为,我们可以证明,21个是自然的,我们可以证明是2个。
您是否解释了为什么可以证明第二份声明,而第四份声明不能或它们如何不同? 谢谢。
The following English statements are logical statements:
- 0 is a natural number
- 2 is a natural number
- For all x, if x is a natural number, then so is the successor of x.
- 21 is a natural number
<>序言:
natural(0).
natural(2).
For all x, natural(x) → natural(successor(x))
natural(21).
Among these logical statements, the first and third can be viewed as axioms for the natural numbers: statements that are assumed to be true and from which all true statements about natural numbers can be proved. The second statement can be proved:
2 = 继承(successor(0)和自然(0)-自然(sucessor(0))-自然(successor(0))>。
另一方面,第四篇声明不能从轴心中证明,因此可以假定是假的。