No, that s not quite right. To understand how FSAs are related to computation, you need to adopt a more general view of computation.
Generally speaking, computation is about taking input and producing output. For now, let s focus on one kind of problem we can compute the answer to: decision problems, where the output is restricted to "yes" or "no". Let s further restrict the kinds of problems we re talking about to those decisions problems whose inputs are strings (like "nice"). These are precisely the kinds of questions that FSAs can be used to answer (but they can t answer all of them!).
因此,FSAs能够回答(有些)以下形式的问题:Sstring X是否拥有财产Y? 这方面的实例是“描述一套已知的、有限的扼杀物吗?” “说明奇数的双位代表吗?” “舱面是否具有划线性? 所有这些都可以由金融服务业协会回答。
Your problems - like 1+1 - is not a decision problem. You can make it a decision problem, though, as follows: "Is my string of the form x+y=z , where x, y and z are decimal representations of integers X, Y and Z and X + Y = Z?" This question, and many like it, cannot be answered using FSAs.
存在更强大的国家机器;它们不是“无限的”。 实例包括:推土机(PDAs)、直线制的汽车(LBAs)和 Tur机(TMs)。 某些决定问题,即“显示X拥有财产Y吗? ” ,甚至连最强大的汽车机器也不能回答。 其中一个实例是阻止问题:“X(y)的哪里是方案,并且是方案的投入,X所代表的方案在通过投入时是否停止了? 在一般情况下,没有TM(即没有算法)来回答这一问题。
您能否写出一个解答问题的FSA,即“以Im 定义的这种语言进行窒息性有效的扼杀吗?” 当然,这取决于你的语言规则。 “Number + Number + ...... + Number”等表格的封面可由财务和行政局承认,但财务和行政局可以告诉你数额。 然而,你可以添加括号,或者说,其他财务安排已不再合适。 换言之,在确认扼杀和计算结果之间存在差异,而金融服务业一般认为是前者。
请自由提问。 如果你对这些问题重新感兴趣,请通过访问以下网站,支持新的计算机科学交流:
http://area51.stack Exchange.com/proposals/35636/computer-science-non-programming?referer=rpnXA1_2BNYzXN85cibxQ2