查阅。 • 如何在大型区域数据框架中优化每个行的过滤和计算。
页: 1 例如:
name day wages hour colour
1 Ann 1 100 6 Green
2 Ann 1 150 18 Blue
3 Ann 2 200 10 Blue
4 Ann 3 150 10 Green
5 Bob 1 100 11 Red
6 Bob 1 200 17 Red
7 Bob 1 150 20 Green
8 Bob 2 100 11 Red
我愿就每个独特的姓名/日,每四个时间段中的一个时间段了解若干次
t1 (hour < 9)
t2 (hour < 17)
t3 (hour > 9)
t4 (hour > 17)
Some examples of facts might be:
wages > 175
colour = "Green"
我可以通过以下<代码>数据来做到这一点。 过滤器
setkey(dt,name,day)
result <- dt[,list(wages.t1=sum(wages>175&hour<9),
wages.t2=sum(wages>175&hour<17),
wages.t3=sum(wages>175&hour>9),
wages.t4=sum(wages>175&hour>17),
green.t1=sum(colour=="Green"&hour<9),
green.t2=sum(colour=="Green"&hour<17),
green.t3=sum(colour=="Green"&hour>9),
green.t4=sum(colour=="Green"&hour>17)),
名单(姓名:日)
让我向我转达我的发言。
name day wages.t1 wages.t2 wages.t3 wages.t4 green.t1 green.t2 green.t3 green.t4
[1,] Ann 1 0 0 0 0 1 1 0 0
[2,] Ann 2 0 1 1 0 0 0 0 0
[3,] Ann 3 0 0 0 0 0 1 1 0
[4,] Bob 1 0 0 1 0 0 0 1 1
[5,] Bob 2 0 0 0 0 0 0 0 0
但(a) 不能阅读和阅读;书写和(b) 种子效率低下。
在我如何能够做得更好方面,任何ti? 请注意,在我的实际情况中,我有数以百计的千分之数、四个时期和30至35个时期的事实。
-- Code to create dt
dt = data.table(
name = factor(c("Ann", "Ann", "Ann", "Ann",
"Bob", "Bob", "Bob", "Bob")),
day = c(1, 1, 2, 3, 1, 1, 1, 2),
wages = c(100, 150, 200, 150, 100, 200, 150, 100),
hour = c(6, 18, 10, 10, 11, 17, 20, 11),
colour = c("Green", "Blue", "Blue", "Green", "Red",
"Red", "Green", "Red")
)