我正试图分析生物体的一些直观渗透数据,以形成一种生境分布模式。 一旦发现生物体,就会随着特定时间间隔收集点数据而加以跟踪。 由于这些“跟踪器”之间的自动校正,我希望采用类似于Pirotta等人(2011年)的GAM-GEE方法,使用包裹和间谍(http://www.int-res.com/abstracts/meps/v436/p257-272/)。 他们的区域说明载于本文(http://www.int-res.com/articles/suppl/m436p257_supp/m436p257_supp1-code.r)。 我利用了这一守则,但成功有限,模型的多重问题未能趋同。
我的数据结构如下:
> str(dat2)
data.frame : 10792 obs. of 4 variables:
$ dist_slag : num 26475 26340 25886 25400 24934 ...
$ Depth : num -10.1 -10.5 -16.6 -22.2 -29.7 ...
$ dolphin_presence: int 0 0 0 0 0 0 0 0 0 0 ...
$ block : int 1 1 1 1 1 1 1 1 1 1 ...
> head(dat2)
dist_slag Depth dolphin_presence block
1 26475.47 -10.0934 0 1
2 26340.47 -10.4870 0 1
3 25886.33 -16.5752 0 1
4 25399.88 -22.2474 0 1
5 24934.29 -29.6797 0 1
6 24519.90 -26.2370 0 1
这里是我块状变量的概述(表明每个区有汽车校正的团体数目)。
> summary(dat2$block)
Min. 1st Qu. Median Mean 3rd Qu. Max.
1.00 39.00 76.00 73.52 111.00 148.00
然而,我想利用一揽子措施,因为我更熟悉Simon Wood教授的一揽子计划和职能,似乎伽马4是最合适的。 必须指出,这些模型具有双轨反应(瞬间存在的有机存在),因此我认为赌博4比赌博更合适。 在赌博帮助中,它提供了以下因素中的汽车校服的例子:
## more complicated autocorrelation example - AR errors
## only within groups defined by `fac
e <- rnorm(n,0,sig)
for (i in 2:n) e[i] <- 0.6*e[i-1]*(fac[i-1]==fac[i]) + e[i]
y <- f + e
b <- gamm(y~s(x,k=20),correlation=corAR1(form=~1|fac))
Following this example, the following is the code I used for my dataset
b <- gamm4(dolphin_presence~s(dist_slag)+s(Depth),random=(form=~1|block), family=binomial(),data=dat)
然而,通过审查产出(摘要(b$gam)和具体摘要(b$mer),我要么不知道如何解释结果,要么不认为小组内部的汽车校正正在得到考虑。
> summary(b$gam)
Family: binomial
Link function: logit
Formula:
dolphin_presence ~ s(dist_slag) + s(Depth)
Parametric coefficients:
Estimate Std. Error z value Pr(>|z|)
(Intercept) -13.968 5.145 -2.715 0.00663 **
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
Approximate significance of smooth terms:
edf Ref.df Chi.sq p-value
s(dist_slag) 4.943 4.943 70.67 6.85e-14 ***
s(Depth) 6.869 6.869 115.59 < 2e-16 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
R-sq.(adj) = 0.317glmer.ML score = 10504 Scale est. = 1 n = 10792
>
> summary(b$mer)
Generalized linear mixed model fit by the Laplace approximation
AIC BIC logLik deviance
10514 10551 -5252 10504
Random effects:
Groups Name Variance Std.Dev.
Xr s(dist_slag) 1611344 1269.39
Xr.0 s(Depth) 98622 314.04
Number of obs: 10792, groups: Xr, 8; Xr.0, 8
Fixed effects:
Estimate Std. Error z value Pr(>|z|)
X(Intercept) -13.968 5.145 -2.715 0.00663 **
Xs(dist_slag)Fx1 -35.871 33.944 -1.057 0.29063
Xs(Depth)Fx1 3.971 3.740 1.062 0.28823
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
Correlation of Fixed Effects:
X(Int) X(_)F1
Xs(dst_s)F1 0.654
Xs(Dpth)Fx1 -0.030 0.000
>
我如何确保在“锁”变数的每个独特价值范围内确实考虑到汽车校正? 什么是解释“消费(mer)”产出的最简单方式?
这些结果与使用相同变量和参数的普通gam(包装毫克v)不同,没有“关联=.......”一词,这表明情况有所不同。
然而,当我对相关术语(海森)使用不同的变量时,我获得SAME输出:
> dat2 <- data.frame(dist_slag = dat$dist_slag, Depth = dat$Depth, dolphin_presence = dat$dolphin_presence,
+ block = dat$block, season=dat$season)
> head(dat2)
dist_slag Depth dolphin_presence block season
1 26475.47 -10.0934 0 1 F
2 26340.47 -10.4870 0 1 F
3 25886.33 -16.5752 0 1 F
4 25399.88 -22.2474 0 1 F
5 24934.29 -29.6797 0 1 F
6 24519.90 -26.2370 0 1 F
> summary(dat2$season)
F S
3224 7568
> b <- gamm4(dolphin_presence~s(dist_slag)+s(Depth),correlation=corAR1(1, form=~1 | season), family=binomial(),data=dat2)
> summary(b$gam)
Family: binomial
Link function: logit
Formula:
dolphin_presence ~ s(dist_slag) + s(Depth)
Parametric coefficients:
Estimate Std. Error z value Pr(>|z|)
(Intercept) -13.968 5.145 -2.715 0.00663 **
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
Approximate significance of smooth terms:
edf Ref.df Chi.sq p-value
s(dist_slag) 4.943 4.943 70.67 6.85e-14 ***
s(Depth) 6.869 6.869 115.59 < 2e-16 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
R-sq.(adj) = 0.317glmer.ML score = 10504 Scale est. = 1 n = 10792
> summary(b$mer)
Generalized linear mixed model fit by the Laplace approximation
AIC BIC logLik deviance
10514 10551 -5252 10504
Random effects:
Groups Name Variance Std.Dev.
Xr s(dist_slag) 1611344 1269.39
Xr.0 s(Depth) 98622 314.04
Number of obs: 10792, groups: Xr, 8; Xr.0, 8
Fixed effects:
Estimate Std. Error z value Pr(>|z|)
X(Intercept) -13.968 5.145 -2.715 0.00663 **
Xs(dist_slag)Fx1 -35.871 33.944 -1.057 0.29063
Xs(Depth)Fx1 3.971 3.740 1.062 0.28823
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
Correlation of Fixed Effects:
X(Int) X(_)F1
Xs(dst_s)F1 0.654
Xs(Dpth)Fx1 -0.030 0.000
>
我只想确保正确允许在“锁定”变量的每个价值范围内进行相互关系。 我如何制定这一模式,以说在每一块块的单一价值中都可能存在汽车校正,而是在各块块之间独立?
在另一个方面,我还收到大模型模型完成模型之后的以下警告信息(变数超过2个):
Warning message:
In mer_finalize(ans) : false convergence (8)