我的阴谋就是这样。
我想从轴线上 turn起。 而且,我利用的是这样做。
plt.tick_params(labelleft=False, left=False)
And now the plot looks like this. Even though the labels are turned off the scale 1e67
still remains.
替换<代码>1e67 这将使这块地貌更好。 我如何这样做?
seaborn
is used to draw the plot, but it s just a high-level API for matplotlib
.
matplotlib
methods..set()
..set(yticklabels=[])
should remove tick labels.
.set_title()
, but you can use .set(title= )
sns.boxplot(...).set(xticklabels=[])
because, while this works, the object type is changed from matplotlib.axes._axes.Axes
for sns.boxplot(...)
, to list
..set(ylabel=None)
should remove the axis label..tick_params(left=False)
will remove the ticks.python 3.11
, pandas 1.5.2
, matplotlib 3.6.2
, seaborn 0.12.1
import seaborn as sns
import matplotlib.pyplot as plt
# load data
exercise = sns.load_dataset( exercise )
pen = sns.load_dataset( penguins )
# create figures
fig, ax = plt.subplots(2, 1, figsize=(8, 8))
# plot data
g1 = sns.boxplot(x= time , y= pulse , hue= kind , data=exercise, ax=ax[0])
g2 = sns.boxplot(x= species , y= body_mass_g , hue= sex , data=pen, ax=ax[1])
plt.show()
fig, ax = plt.subplots(2, 1, figsize=(8, 8))
g1 = sns.boxplot(x= time , y= pulse , hue= kind , data=exercise, ax=ax[0])
g1.set(yticklabels=[]) # remove the tick labels
g1.set(title= Exercise: Pulse by Time for Exercise Type ) # add a title
g1.set(ylabel=None) # remove the axis label
g2 = sns.boxplot(x= species , y= body_mass_g , hue= sex , data=pen, ax=ax[1])
g2.set(yticklabels=[])
g2.set(title= Penguins: Body Mass by Species for Gender )
g2.set(ylabel=None) # remove the y-axis label
g2.tick_params(left=False) # remove the ticks
plt.tight_layout()
plt.show()
import numpy as np
import matplotlib.pyplot as plt
import pandas as pd
# sinusoidal sample data
sample_length = range(1, 1+1) # number of columns of frequencies
rads = np.arange(0, 2*np.pi, 0.01)
data = np.array([(np.cos(t*rads)*10**67) + 3*10**67 for t in sample_length])
df = pd.DataFrame(data.T, index=pd.Series(rads.tolist(), name= radians ), columns=[f freq: {i}x for i in sample_length])
df.reset_index(inplace=True)
# plot
fig, ax = plt.subplots(figsize=(8, 8))
ax.plot( radians , freq: 1x , data=df)
# or skip the previous two lines and plot df directly
# ax = df.plot(x= radians , y= freq: 1x , figsize=(8, 8), legend=False)
# plot
fig, ax = plt.subplots(figsize=(8, 8))
ax.plot( radians , freq: 1x , data=df)
# or skip the previous two lines and plot df directly
# ax = df.plot(x= radians , y= freq: 1x , figsize=(8, 8), legend=False)
ax.set(yticklabels=[]) # remove the tick labels
ax.tick_params(left=False) # remove the ticks
Is there a way to force Django models to pass a field to a MySQL function every time the model data is read or loaded? To clarify what I mean in SQL, I want the Django model to produce something like ...
I am looking for an enterprise tasks scheduler for python, like quartz is for Java. Requirements: Persistent: if the process restarts or the machine restarts, then all the jobs must stay there and ...
Given the following list that contains some duplicate and some unique dictionaries, what is the best method to remove unique dictionaries first, then reduce the duplicate dictionaries to single ...
Simple enough question: I m using python random module to generate random integers. I want to know what is the suggested value to use with the random.seed() function? Currently I am letting this ...
I m using PyDev under Eclipse to write some Jython code. I ve got numerous instances where I need to do something like this: import com.work.project.component.client.Interface.ISubInterface as ...
Python s paster serve app.ini is taking longer than I would like to be ready for the first request. I know how to profile requests with middleware, but how do I profile the initialization time? I ...
Our business currently has an online store and recently we ve been offering free specials to our customers. Right now, we simply display the special and give the buyer a notice stating we will add the ...
I m trying to convert a Python dictionary into a Python list, in order to perform some calculations. #My dictionary dict = {} dict[ Capital ]="London" dict[ Food ]="Fish&Chips" dict[ 2012 ]="...