English 中文(简体)
scipy. optimize. fmin_bfgs 单函数计算 f 和 frime
原标题:scipy.optimize.fmin_bfgs single function computes both f and fprime

我使用 scipy.optimize.fmin_bfgs(f, init_theta, fprime) 来尽量减少有梯度 f f 。 我在一个函数中计算 f fprime ,因为大多数计算都相同,所以不需要两次。

是否有方法可以调用 fmin_bfgs () 来指定一个返回 f fprime 的单函数?

最佳回答

如果您试图节省计算时间,而不是仅仅将 f f 的计算结合起来,以方便代码使用,那么似乎您需要在函数周围加一个折叠,以缓存值,因为 fmin_bfgs 似乎不允许您通过这样的函数(不同于其他优化功能)。

在此, 一种方法可以做到这一点, 将最近被评估的 10 个点保留在一个小缓存中 。 (我不知道此函数的调用是否需要使用线索安全 : 可能不是, 但如果是的话, 我猜你可能需要在这里添加一些锁 。 )

def func_wrapper(f, cache_size=10):
    evals = {}
    last_points = collections.deque()

    def get(pt, which):
        s = pt.tostring() # get binary string of numpy array, to make it hashable
        if s not in evals:
            evals[s] = f(pt)
            last_points.append(s)
            if len(last_points) >= cache_size:
                del evals[last_points.popleft()]
        return evals[s][which]

    return functools.partial(get, which=0), functools.partial(get, which=1)

如果当时我们这样做

>>> def f(x):
...    print "evaluating", x
...    return (x-3)**2, 2*(x-3)

>>> f_, fprime = func_wrapper(f)

>>> optimize.fmin_bfgs(f_, 1000, fprime)
evaluating [ 994.93480441]
evaluating [ 974.67402207]
evaluating [ 893.63089268]
evaluating [ 665.93446894]
evaluating [ 126.99931561]
evaluating [ 3.]
Optimization terminated successfully.
         Current function value: 0.000000
         Iterations: 4
         Function evaluations: 7
         Gradient evaluations: 7
array([ 3.])

我们可以看到,我们不重复任何评价。

问题回答

假设您有一个 python 函数 f(x) 返回函数值和梯度:

In [20]: def f(x):
   ....:     return (x-3)**2, 2*(x-3)

然后分别通过产出,就像这样:

In [21]: optimize.fmin_bfgs(lambda x: f(x)[0], 1000, lambda x: f(x)[1])
Optimization terminated successfully.
         Current function value: 0.000000
         Iterations: 4
         Function evaluations: 7
         Gradient evaluations: 7
Out[21]: array([ 3.])

似乎没有直接做到这一点的方法。 但是 scipy. optimize. 最小化 确实允许您这样做。 您可以通过 frime 的 True 值, 而不是函数。 这表示 f 返回函数值和梯度的图例。 您可以用 方法 = BFGS 来引用 < code> 最小化 来获取您想要的效果 。

它引人启迪地看到minimize 的源代码。它和 fmin_bfgs最终调用_minimimize_bfgs,它将frime和fprime作为独立的函数参数。当 fprimme 是一个布林, minimize 巧妙地构造frime 时, 是一个可以记住 f 返回的最后值的对象, 并隐藏梯度信息 。





相关问题
Can Django models use MySQL functions?

Is there a way to force Django models to pass a field to a MySQL function every time the model data is read or loaded? To clarify what I mean in SQL, I want the Django model to produce something like ...

An enterprise scheduler for python (like quartz)

I am looking for an enterprise tasks scheduler for python, like quartz is for Java. Requirements: Persistent: if the process restarts or the machine restarts, then all the jobs must stay there and ...

How to remove unique, then duplicate dictionaries in a list?

Given the following list that contains some duplicate and some unique dictionaries, what is the best method to remove unique dictionaries first, then reduce the duplicate dictionaries to single ...

What is suggested seed value to use with random.seed()?

Simple enough question: I m using python random module to generate random integers. I want to know what is the suggested value to use with the random.seed() function? Currently I am letting this ...

How can I make the PyDev editor selectively ignore errors?

I m using PyDev under Eclipse to write some Jython code. I ve got numerous instances where I need to do something like this: import com.work.project.component.client.Interface.ISubInterface as ...

How do I profile `paster serve` s startup time?

Python s paster serve app.ini is taking longer than I would like to be ready for the first request. I know how to profile requests with middleware, but how do I profile the initialization time? I ...

Pragmatically adding give-aways/freebies to an online store

Our business currently has an online store and recently we ve been offering free specials to our customers. Right now, we simply display the special and give the buyer a notice stating we will add the ...

Converting Dictionary to List? [duplicate]

I m trying to convert a Python dictionary into a Python list, in order to perform some calculations. #My dictionary dict = {} dict[ Capital ]="London" dict[ Food ]="Fish&Chips" dict[ 2012 ]="...

热门标签