I am working on the same problem of counting number of triangles on undirected graph and wisty s solution works really well in my case. I have modified it a bit so only undirected triangles are counted.
#### function for counting undirected cycles
def generate_triangles(nodes):
visited_ids = set() # mark visited node
for node_a_id in nodes:
temp_visited = set() # to get undirected triangles
for node_b_id in nodes[node_a_id]:
if node_b_id == node_a_id:
raise ValueError # to prevent self-loops, if your graph allows self-loops then you don t need this condition
if node_b_id in visited_ids:
continue
for node_c_id in nodes[node_b_id]:
if node_c_id in visited_ids:
continue
if node_c_id in temp_visited:
continue
if node_a_id in nodes[node_c_id]:
yield(node_a_id, node_b_id, node_c_id)
else:
continue
temp_visited.add(node_b_id)
visited_ids.add(node_a_id)
Of course, you need to use a dictionary for example
#### Test cycles ####
nodes = {}
nodes[0] = [1, 2, 3]
nodes[1] = [0, 2]
nodes[2] = [0, 1, 3]
nodes[3] = [1]
cycles = list(generate_triangles(nodes))
print cycles
Using the code of Wisty, the triangles found will be
[(0, 1, 2), (0, 2, 1), (0, 3, 1), (1, 2, 3)]
which counted the triangle (0, 1, 2) and (0, 2, 1) as two different triangles. With the code I modified, these are counted as only one triangle.
I used this with a relatively small dictionary of under 100 keys and each key has on average 50 values.