How do I print an integer with commas as thousands separators?
1234567 ⟶ 1,234,567
It does not need to be locale-specific to decide between periods and commas.
How do I print an integer with commas as thousands separators?
1234567 ⟶ 1,234,567
It does not need to be locale-specific to decide between periods and commas.
{:,} .format(value) # For Python ≥2.7
f {value:,} # For Python ≥3.6
import locale
locale.setlocale(locale.LC_ALL, ) # Use for auto, or force e.g. to en_US.UTF-8
{:n} .format(value) # For Python ≥2.7
f {value:n} # For Python ≥3.6
Per Format Specification Mini-Language,
The
,
option signals the use of a comma for a thousands separator. For a locale aware separator, use then
integer presentation type instead.
I m surprised that no one has mentioned that you can do this with f-strings in Python 3.6+ as easy as this:
>>> num = 10000000
>>> print(f"{num:,}")
10,000,000
... where the part after the colon is the format specifier. The comma is the separator character you want, so f"{num:_}"
uses underscores instead of a comma. Only "," and "_" is possible to use with this method.
This is equivalent of using format(num, ",")
for older versions of python 3.
This might look like magic when you see it the first time, but it s not. It s just part of the language, and something that s commonly needed enough to have a shortcut available. To read more about it, have a look at the group subcomponent.
I got this to work:
>>> import locale
>>> locale.setlocale(locale.LC_ALL, en_US )
en_US
>>> locale.format("%d", 1255000, grouping=True)
1,255,000
Sure, you don t need internationalization support, but it s clear, concise, and uses a built-in library.
P.S. That "%d" is the usual %-style formatter. You can have only one formatter, but it can be whatever you need in terms of field width and precision settings.
P.P.S. If you can t get locale
to work, I d suggest a modified version of Mark s answer:
def intWithCommas(x):
if type(x) not in [type(0), type(0L)]:
raise TypeError("Parameter must be an integer.")
if x < 0:
return - + intWithCommas(-x)
result =
while x >= 1000:
x, r = divmod(x, 1000)
result = ",%03d%s" % (r, result)
return "%d%s" % (x, result)
Recursion is useful for the negative case, but one recursion per comma seems a bit excessive to me.
For inefficiency and unreadability it s hard to beat:
>>> import itertools
>>> s = -1234567
>>> , .join(["%s%s%s" % (x[0], x[1] or , x[2] or ) for x in itertools.izip_longest(s[::-1][::3], s[::-1][1::3], s[::-1][2::3])])[::-1].replace( -, , - )
Here is the locale grouping code after removing irrelevant parts and cleaning it up a little:
(The following only works for integers)
def group(number):
s = %d % number
groups = []
while s and s[-1].isdigit():
groups.append(s[-3:])
s = s[:-3]
return s + , .join(reversed(groups))
>>> group(-23432432434.34)
-23,432,432,434
There are already some good answers in here. I just want to add this for future reference. In python 2.7 there is going to be a format specifier for thousands separator. According to python docs it works like this
>>> {:20,.2f} .format(f)
18,446,744,073,709,551,616.00
In python3.1 you can do the same thing like this:
>>> format(1234567, ,d )
1,234,567
Here s a one-line regex replacement:
re.sub("(d)(?=(d{3})+(?!d))", r"1,", "%d" % val)
Works only for inegral outputs:
import re
val = 1234567890
re.sub("(d)(?=(d{3})+(?!d))", r"1,", "%d" % val)
# Returns: 1,234,567,890
val = 1234567890.1234567890
# Returns: 1,234,567,890
Or for floats with less than 4 digits, change the format specifier to %.3f
:
re.sub("(d)(?=(d{3})+(?!d))", r"1,", "%.3f" % val)
# Returns: 1,234,567,890.123
NB: Doesn t work correctly with more than three decimal digits as it will attempt to group the decimal part:
re.sub("(d)(?=(d{3})+(?!d))", r"1,", "%.5f" % val)
# Returns: 1,234,567,890.12,346
Let s break it down:
re.sub(pattern, repl, string)
pattern =
"(d) # Find one digit...
(?= # that is followed by...
(d{3})+ # one or more groups of three digits...
(?!d) # which are not followed by any more digits.
)",
repl =
r"1,", # Replace that one digit by itself, followed by a comma,
# and continue looking for more matches later in the string.
# (re.sub() replaces all matches it finds in the input)
string =
"%d" % val # Format the string as a decimal to begin with
This is what I do for floats. Although, honestly, I m not sure which versions it works for - I m using 2.7:
my_number = 4385893.382939491
my_string = {:0,.2f} .format(my_number)
Returns: 4,385,893.38
Update: I recently had an issue with this format (couldn t tell you the exact reason), but was able to fix it by dropping the 0
:
my_string = {:,.2f} .format(my_number)
You can also use {:n} .format( value )
for a locale representation. I think this is the simpliest way for a locale solution.
For more information, search for thousands
in Python DOC.
For currency, you can use locale.currency
, setting the flag grouping
:
Code
import locale
locale.setlocale( locale.LC_ALL, )
locale.currency( 1234567.89, grouping = True )
Output
Portuguese_Brazil.1252
R$ 1.234.567,89
Slightly expanding the answer of Ian Schneider:
If you want to use a custom thousands separator, the simplest solution is:
{:,} .format(value).replace( , , your_custom_thousands_separator)
{:,.2f} .format(123456789.012345).replace( , , )
If you want the German representation like this, it gets a bit more complicated:
( {:,.2f} .format(123456789.012345)
.replace( , , ) # save the thousands separators
.replace( . , , ) # dot to comma
.replace( , . )) # thousand separators to dot
Here are some ways to do it with formatting (compatible with floats and ints)
num = 2437.68
# Way 1: String Formatting
{:,} .format(num)
>>> 2,437.68
# Way 2: F-Strings
f {num:,}
>>> 2,437.68
# Way 3: Built-in Format Function
format(num, , )
>>> 2,437.68
I m sure there must be a standard library function for this, but it was fun to try to write it myself using recursion so here s what I came up with:
def intToStringWithCommas(x):
if type(x) is not int and type(x) is not long:
raise TypeError("Not an integer!")
if x < 0:
return - + intToStringWithCommas(-x)
elif x < 1000:
return str(x)
else:
return intToStringWithCommas(x / 1000) + , + %03d % (x % 1000)
Having said that, if someone else does find a standard way to do it, you should use that instead.
The accepted answer is fine, but I actually prefer format(number, , )
. Easier for me to interpret and remember.
From the comments to activestate recipe 498181 I reworked this:
import re
def thous(x, sep= , , dot= . ):
num, _, frac = str(x).partition(dot)
num = re.sub(r (d{3})(?=d) , r 1 +sep, num[::-1])[::-1]
if frac:
num += dot + frac
return num
It uses the regular expressions feature: lookahead i.e. (?=d)
to make sure only groups of three digits that have a digit after them get a comma. I say after because the string is reverse at this point.
[::-1]
just reverses a string.
Simplest answer:
format (123456, ",")
Result:
123,456
--
Integers (without decimal):
"{:,d}".format(1234567)
--
Floats (with decimal):
"{:,.2f}".format(1234567)
where the number before f
specifies the number of decimal places.
--
Bonus
Quick-and-dirty starter function for the Indian lakhs/crores numbering system (12,34,567):
from Python version 2.6 you can do this:
def format_builtin(n):
return format(n, , )
For Python versions < 2.6 and just for your information, here are 2 manual solutions, they turn floats to ints but negative numbers work correctly:
def format_number_using_lists(number):
string = %d % number
result_list = list(string)
indexes = range(len(string))
for index in indexes[::-3][1:]:
if result_list[index] != - :
result_list.insert(index+1, , )
return .join(result_list)
few things to notice here:
And a more hardcore version:
def format_number_using_generators_and_list_comprehensions(number):
string = %d % number
generator = reversed(
[
value+ , if (index!=0 and value!= - and index%3==0) else value
for index,value in enumerate(reversed(string))
]
)
return .join(generator)
I am a Python beginner, but an experienced programmer. I have Python 3.5, so I can just use the comma, but this is nonetheless an interesting programming exercise. Consider the case of an unsigned integer. The most readable Python program for adding thousands separators appears to be:
def add_commas(instr):
out = [instr[0]]
for i in range(1, len(instr)):
if (len(instr) - i) % 3 == 0:
out.append( , )
out.append(instr[i])
return .join(out)
It is also possible to use a list comprehension:
add_commas(instr):
rng = reversed(range(1, len(instr) + (len(instr) - 1)//3 + 1))
out = [ , if j%4 == 0 else instr[-(j - j//4)] for j in rng]
return .join(out)
This is shorter, and could be a one liner, but you will have to do some mental gymnastics to understand why it works. In both cases we get:
for i in range(1, 11):
instr = 1234567890 [:i]
print(instr, add_commas(instr))
1 1
12 12
123 123
1234 1,234
12345 12,345
123456 123,456
1234567 1,234,567
12345678 12,345,678
123456789 123,456,789
1234567890 1,234,567,890
The first version is the more sensible choice, if you want the program to be understood.
I have found some issues with the dot separator in the previous top voted answers. I have designed a universal solution where you can use whatever you want as a thousand separator without modifying the locale. I know it s not the most elegant solution, but it gets the job done. Feel free to improve it !
def format_integer(number, thousand_separator= . ):
def reverse(string):
string = "".join(reversed(string))
return string
s = reverse(str(number))
count = 0
result =
for char in s:
count = count + 1
if count % 3 == 0:
if len(s) == count:
result = char + result
else:
result = thousand_separator + char + result
else:
result = char + result
return result
print(format_integer(50))
# 50
print(format_integer(500))
# 500
print(format_integer(50000))
# 50.000
print(format_integer(50000000))
# 50.000.000
Use separators and decimals together in float numbers : (In this example, two decimal places)
large_number = 4545454.26262666
print(f"Formatted: {large_number:,.2f}")
Result: Formatted: 4,545,454.26
Here s one that works for floats too:
def float2comma(f):
s = str(abs(f)) # Convert to a string
decimalposition = s.find(".") # Look for decimal point
if decimalposition == -1:
decimalposition = len(s) # If no decimal, then just work from the end
out = ""
for i in range(decimalposition+1, len(s)): # do the decimal
if not (i-decimalposition-1) % 3 and i-decimalposition-1: out = out+","
out = out+s[i]
if len(out):
out = "."+out # add the decimal point if necessary
for i in range(decimalposition-1,-1,-1): # working backwards from decimal point
if not (decimalposition-i-1) % 3 and decimalposition-i-1: out = ","+out
out = s[i]+out
if f < 0:
out = "-"+out
return out
Usage Example:
>>> float2comma(10000.1111)
10,000.111,1
>>> float2comma(656565.122)
656,565.122
>>> float2comma(-656565.122)
-656,565.122
One liner for Python 2.5+ and Python 3 (positive int only):
.join(reversed([x + ( , if i and not i % 3 else ) for i, x in enumerate(reversed(str(1234567)))]))
I m using python 2.5 so I don t have access to the built-in formatting.
I looked at the Django code intcomma (intcomma_recurs in code below) and realized it s inefficient, because it s recursive and also compiling the regex on every run is not a good thing either. This is not necessary an issue as django isn t really THAT focused on this kind of low-level performance. Also, I was expecting a factor of 10 difference in performance, but it s only 3 times slower.
Out of curiosity I implemented a few versions of intcomma to see what the performance advantages are when using regex. My test data concludes a slight advantage for this task, but surprisingly not much at all.
I also was pleased to see what I suspected: using the reverse xrange approach is unnecessary in the no-regex case, but it does make the code look slightly better at the cost of ~10% performance.
Also, I assume what you re passing in is a string and looks somewhat like a number. Results undetermined otherwise.
from __future__ import with_statement
from contextlib import contextmanager
import re,time
re_first_num = re.compile(r"d")
def intcomma_noregex(value):
end_offset, start_digit, period = len(value),re_first_num.search(value).start(),value.rfind( . )
if period == -1:
period=end_offset
segments,_from_index,leftover = [],0,(period-start_digit) % 3
for _index in xrange(start_digit+3 if not leftover else start_digit+leftover,period,3):
segments.append(value[_from_index:_index])
_from_index=_index
if not segments:
return value
segments.append(value[_from_index:])
return , .join(segments)
def intcomma_noregex_reversed(value):
end_offset, start_digit, period = len(value),re_first_num.search(value).start(),value.rfind( . )
if period == -1:
period=end_offset
_from_index,segments = end_offset,[]
for _index in xrange(period-3,start_digit,-3):
segments.append(value[_index:_from_index])
_from_index=_index
if not segments:
return value
segments.append(value[:_from_index])
return , .join(reversed(segments))
re_3digits = re.compile(r (?<=d)d{3}(?!d) )
def intcomma(value):
segments,last_endoffset=[],len(value)
while last_endoffset > 3:
digit_group = re_3digits.search(value,0,last_endoffset)
if not digit_group:
break
segments.append(value[digit_group.start():last_endoffset])
last_endoffset=digit_group.start()
if not segments:
return value
if last_endoffset:
segments.append(value[:last_endoffset])
return , .join(reversed(segments))
def intcomma_recurs(value):
"""
Converts an integer to a string containing commas every three digits.
For example, 3000 becomes 3,000 and 45000 becomes 45,000 .
"""
new = re.sub("^(-?d+)(d{3})", g<1>,g<2> , str(value))
if value == new:
return new
else:
return intcomma(new)
@contextmanager
def timed(save_time_func):
begin=time.time()
try:
yield
finally:
save_time_func(time.time()-begin)
def testset_xsimple(func):
func( 5 )
def testset_simple(func):
func( 567 )
def testset_onecomma(func):
func( 567890 )
def testset_complex(func):
func( -1234567.024 )
def testset_average(func):
func( -1234567.024 )
func( 567 )
func( 5674 )
if __name__ == __main__ :
print Test results:
for test_data in ( 5 , 567 , 1234 , 1234.56 , -253892.045 ):
for func in (intcomma,intcomma_noregex,intcomma_noregex_reversed,intcomma_recurs):
print func.__name__,test_data,func(test_data)
times=[]
def overhead(x):
pass
for test_run in xrange(1,4):
for func in (intcomma,intcomma_noregex,intcomma_noregex_reversed,intcomma_recurs,overhead):
for testset in (testset_xsimple,testset_simple,testset_onecomma,testset_complex,testset_average):
for x in xrange(1000): # prime the test
testset(func)
with timed(lambda x:times.append(((test_run,func,testset),x))):
for x in xrange(50000):
testset(func)
for (test_run,func,testset),_delta in times:
print test_run,func.__name__,testset.__name__,_delta
And here are the test results:
intcomma 5 5
intcomma_noregex 5 5
intcomma_noregex_reversed 5 5
intcomma_recurs 5 5
intcomma 567 567
intcomma_noregex 567 567
intcomma_noregex_reversed 567 567
intcomma_recurs 567 567
intcomma 1234 1,234
intcomma_noregex 1234 1,234
intcomma_noregex_reversed 1234 1,234
intcomma_recurs 1234 1,234
intcomma 1234.56 1,234.56
intcomma_noregex 1234.56 1,234.56
intcomma_noregex_reversed 1234.56 1,234.56
intcomma_recurs 1234.56 1,234.56
intcomma -253892.045 -253,892.045
intcomma_noregex -253892.045 -253,892.045
intcomma_noregex_reversed -253892.045 -253,892.045
intcomma_recurs -253892.045 -253,892.045
1 intcomma testset_xsimple 0.0410001277924
1 intcomma testset_simple 0.0369999408722
1 intcomma testset_onecomma 0.213000059128
1 intcomma testset_complex 0.296000003815
1 intcomma testset_average 0.503000020981
1 intcomma_noregex testset_xsimple 0.134000062943
1 intcomma_noregex testset_simple 0.134999990463
1 intcomma_noregex testset_onecomma 0.190999984741
1 intcomma_noregex testset_complex 0.209000110626
1 intcomma_noregex testset_average 0.513000011444
1 intcomma_noregex_reversed testset_xsimple 0.124000072479
1 intcomma_noregex_reversed testset_simple 0.12700009346
1 intcomma_noregex_reversed testset_onecomma 0.230000019073
1 intcomma_noregex_reversed testset_complex 0.236999988556
1 intcomma_noregex_reversed testset_average 0.56299996376
1 intcomma_recurs testset_xsimple 0.348000049591
1 intcomma_recurs testset_simple 0.34600019455
1 intcomma_recurs testset_onecomma 0.625
1 intcomma_recurs testset_complex 0.773999929428
1 intcomma_recurs testset_average 1.6890001297
1 overhead testset_xsimple 0.0179998874664
1 overhead testset_simple 0.0190000534058
1 overhead testset_onecomma 0.0190000534058
1 overhead testset_complex 0.0190000534058
1 overhead testset_average 0.0309998989105
2 intcomma testset_xsimple 0.0360000133514
2 intcomma testset_simple 0.0369999408722
2 intcomma testset_onecomma 0.207999944687
2 intcomma testset_complex 0.302000045776
2 intcomma testset_average 0.523000001907
2 intcomma_noregex testset_xsimple 0.139999866486
2 intcomma_noregex testset_simple 0.141000032425
2 intcomma_noregex testset_onecomma 0.203999996185
2 intcomma_noregex testset_complex 0.200999975204
2 intcomma_noregex testset_average 0.523000001907
2 intcomma_noregex_reversed testset_xsimple 0.130000114441
2 intcomma_noregex_reversed testset_simple 0.129999876022
2 intcomma_noregex_reversed testset_onecomma 0.236000061035
2 intcomma_noregex_reversed testset_complex 0.241999864578
2 intcomma_noregex_reversed testset_average 0.582999944687
2 intcomma_recurs testset_xsimple 0.351000070572
2 intcomma_recurs testset_simple 0.352999925613
2 intcomma_recurs testset_onecomma 0.648999929428
2 intcomma_recurs testset_complex 0.808000087738
2 intcomma_recurs testset_average 1.81900000572
2 overhead testset_xsimple 0.0189998149872
2 overhead testset_simple 0.0189998149872
2 overhead testset_onecomma 0.0190000534058
2 overhead testset_complex 0.0179998874664
2 overhead testset_average 0.0299999713898
3 intcomma testset_xsimple 0.0360000133514
3 intcomma testset_simple 0.0360000133514
3 intcomma testset_onecomma 0.210000038147
3 intcomma testset_complex 0.305999994278
3 intcomma testset_average 0.493000030518
3 intcomma_noregex testset_xsimple 0.131999969482
3 intcomma_noregex testset_simple 0.136000156403
3 intcomma_noregex testset_onecomma 0.192999839783
3 intcomma_noregex testset_complex 0.202000141144
3 intcomma_noregex testset_average 0.509999990463
3 intcomma_noregex_reversed testset_xsimple 0.125999927521
3 intcomma_noregex_reversed testset_simple 0.126999855042
3 intcomma_noregex_reversed testset_onecomma 0.235999822617
3 intcomma_noregex_reversed testset_complex 0.243000030518
3 intcomma_noregex_reversed testset_average 0.56200003624
3 intcomma_recurs testset_xsimple 0.337000131607
3 intcomma_recurs testset_simple 0.342000007629
3 intcomma_recurs testset_onecomma 0.609999895096
3 intcomma_recurs testset_complex 0.75
3 intcomma_recurs testset_average 1.68300008774
3 overhead testset_xsimple 0.0189998149872
3 overhead testset_simple 0.018000125885
3 overhead testset_onecomma 0.018000125885
3 overhead testset_complex 0.0179998874664
3 overhead testset_average 0.0299999713898
this is baked into python per PEP -> https://www.python.org/dev/peps/pep-0378/
just use format(1000, ,d ) to show an integer with thousands separator
there are more formats described in the PEP, have at it
babel module in python has feature to apply commas depending on the locale provided.
To install babel run the below command.
pip install babel
usage
format_currency(1234567.89, USD , locale= en_US )
# Output: $1,234,567.89
format_currency(1234567.89, USD , locale= es_CO )
# Output: US$ 1.234.567,89 (raw output US$xa01.234.567,89)
format_currency(1234567.89, INR , locale= en_IN )
# Output: ₹12,34,567.89
This does money along with the commas
def format_money(money, presym= $ , postsym= ):
fmt = %0.2f % money
dot = string.find(fmt, . )
ret = []
if money < 0 :
ret.append( ( )
p0 = 1
else :
p0 = 0
ret.append(presym)
p1 = (dot-p0) % 3 + p0
while True :
ret.append(fmt[p0:p1])
if p1 == dot : break
ret.append( , )
p0 = p1
p1 += 3
ret.append(fmt[dot:]) # decimals
ret.append(postsym)
if money < 0 : ret.append( ) )
return .join(ret)
I have a python 2 and python 3 version of this code. I know that the question was asked for python 2 but now (8 years later lol) people will probably be using python 3.
Python 3 Code:
import random
number = str(random.randint(1, 10000000))
comma_placement = 4
print( The original number is: {}. .format(number))
while True:
if len(number) % 3 == 0:
for i in range(0, len(number) // 3 - 1):
number = number[0:len(number) - comma_placement + 1] + , + number[len(number) - comma_placement + 1:]
comma_placement = comma_placement + 4
else:
for i in range(0, len(number) // 3):
number = number[0:len(number) - comma_placement + 1] + , + number[len(number) - comma_placement + 1:]
break
print( The new and improved number is: {} .format(number))
Python 2 Code: (Edit. The python 2 code isn t working. I am thinking that the syntax is different).
import random
number = str(random.randint(1, 10000000))
comma_placement = 4
print The original number is: %s. % (number)
while True:
if len(number) % 3 == 0:
for i in range(0, len(number) // 3 - 1):
number = number[0:len(number) - comma_placement + 1] + , + number[len(number) - comma_placement + 1:]
comma_placement = comma_placement + 4
else:
for i in range(0, len(number) // 3):
number = number[0:len(number) - comma_placement + 1] + , + number[len(number) - comma_placement + 1:]
break
print The new and improved number is: %s. % (number)
Here is another variant using a generator function that works for integers:
def ncomma(num):
def _helper(num):
# assert isinstance(numstr, basestring)
numstr = %d % num
for ii, digit in enumerate(reversed(numstr)):
if ii and ii % 3 == 0 and digit.isdigit():
yield ,
yield digit
return .join(reversed([n for n in _helper(num)]))
And here s a test:
>>> for i in (0, 99, 999, 9999, 999999, 1000000, -1, -111, -1111, -111111, -1000000):
... print i, ncomma(i)
...
0 0
99 99
999 999
9999 9,999
999999 999,999
1000000 1,000,000
-1 -1
-111 -111
-1111 -1,111
-111111 -111,111
-1000000 -1,000,000
Italy:
>>> import locale
>>> locale.setlocale(locale.LC_ALL,"")
Italian_Italy.1252
>>> f"{1000:n}"
1.000
Just subclass long
(or float
, or whatever). This is highly practical, because this way you can still use your numbers in math ops (and therefore existing code), but they will all print nicely in your terminal.
>>> class number(long):
def __init__(self, value):
self = value
def __repr__(self):
s = str(self)
l = [x for x in s if x in 1234567890 ]
for x in reversed(range(len(s)-1)[::3]):
l.insert(-x, , )
l = .join(l[1:])
return ( - +l if self < 0 else l)
>>> number(-100000)
-100,000
>>> number(-100)
-100
>>> number(-12345)
-12,345
>>> number(928374)
928,374
>>> 345
Is there a way to force Django models to pass a field to a MySQL function every time the model data is read or loaded? To clarify what I mean in SQL, I want the Django model to produce something like ...
I am looking for an enterprise tasks scheduler for python, like quartz is for Java. Requirements: Persistent: if the process restarts or the machine restarts, then all the jobs must stay there and ...
Given the following list that contains some duplicate and some unique dictionaries, what is the best method to remove unique dictionaries first, then reduce the duplicate dictionaries to single ...
Simple enough question: I m using python random module to generate random integers. I want to know what is the suggested value to use with the random.seed() function? Currently I am letting this ...
I m using PyDev under Eclipse to write some Jython code. I ve got numerous instances where I need to do something like this: import com.work.project.component.client.Interface.ISubInterface as ...
Python s paster serve app.ini is taking longer than I would like to be ready for the first request. I know how to profile requests with middleware, but how do I profile the initialization time? I ...
Our business currently has an online store and recently we ve been offering free specials to our customers. Right now, we simply display the special and give the buyer a notice stating we will add the ...
I m trying to convert a Python dictionary into a Python list, in order to perform some calculations. #My dictionary dict = {} dict[ Capital ]="London" dict[ Food ]="Fish&Chips" dict[ 2012 ]="...