First, queues are often backed by actual DB tables and can maintain message durability. That aside, the queue is a natural way to shove off work that needs to be done asynchronously, which if you design on that principal from the start is very powerful.
Other than the fact that a table (entity) has a set of hard columns (attributes), both this table being composed of a set of records composing as well as a queue are nothing more than lists of stuff You are employing the queue-as-a-table as a formal queue, just that you are polling it on a regular (cron) basis.
MQs add another nifty feature though of generally synchronizing access to the message itself (you may or may not be doing this in your SQL to get the next thing).
I like to consider the cron/table mechanism as POLL-based and the MQ as EVENT-based.
Benefit of a queue in my opinion is that it takes care of the sync ing, status updating. MQs can be set up to "broadcast" (topic) or make available the message to a group of consumers or listeners.
MQs though asynchronous would likely operate between your cron window. How do you know that the number of messages you process in your table can be accomplished before the next cron job runs and tries to step on the previous job?
Multiple consumers for the MQ allows you to scale the work as you see fit. In the example above if you saw that your load average
(just the same in the OS process queue) is greater than you like, you can provision another consumer to handle said load, bringing it on and offline as metrics demand.
MQs can be set up to have different operational parameters such as message priority and performance (some queues can remain in memory, others persist to disk).
Downside is that (as already mentioned) that the queue can sometimes be hard to query and for which to obtain metrics. I always find MQ systems that have a DB backing store so that I can myself watch the queue with SQL.