Lookin for 3 into that unsorted list with binary or bisection :
L = 1 5 2 9 38 11 3
1-Take mid point in the whole list L : 9
3 < 9 so delete the right part of the list (38 11 3)
here you can already understand you will never find 3
2-Take mid point in the remaining list 1 5 2 : 5
3 > 5 so delete the right part of the list (5 2)
remains 1
Result : 3 unfound
Two remarks:
1-the binary or bisection algorithm consider right and left as an indication of the order
So i have rudely applied the usual algo considering right is high and left is low
If you consieder the opposit, ie right is low and left is high, then, trying to find 3 in this slighty similar list will lead to " 3 unfound"
L = L = 1 5 2 9 3 38 11
3 < 9 / take right part : 3 38 11
mid point 38
3 < 38 take right part : 11
3 unfound
2- if you accept to re apply systematicly the algorithm on the dropped part of the list than it leads to searching the element in a list of n elements Complexity will be O(n) exactly the same as running all the list from beg to end to search your value.
The time of search could be slightly shorter.
Why ? let s consider you look one by one from beg. to end for the value 100000 in a sorted list. You will find it at the end of your list ! :-)
If now this list is unorderd and your value 100000 is for example exactly at the mid point ... bingo !!