I have a weird situation with scipy.stats.linregress seems to be returning an incorrect standard error:
from scipy import stats
x = [5.05, 6.75, 3.21, 2.66]
y = [1.65, 26.5, -5.93, 7.96]
gradient, intercept, r_value, p_value, std_err = stats.linregress(x,y)
>>> gradient
5.3935773611970186
>>> intercept
-16.281127993087829
>>> r_value
0.72443514211849758
>>> r_value**2
0.52480627513624778
>>> std_err
3.6290901222878866
Whereas Excel returns the following:
slope: 5.394
intercept: -16.281
rsq: 0.525
steyX: 11.696
steyX is excel s standard error function, returning 11.696 versus scipy s 3.63. Anybody know what s going on here? Any alternative way of getting the standard error of a regression in python, without going to Rpy?