10个帐篷的清单有10个。 可能的命令或变更。 为什么是任意的。 只剩下5 000个工件后,便可复制件?
>>> L = range(10)
>>> rL = list()
>>> for i in range(5000):
... random.shuffle(L)
... rL.append(L[:])
...
>>> rL = [tuple(e) for e in rL]
>>> len(set(rL))
4997
>>> for i,t in enumerate(rL):
... if rL.count(t) > 1:
... print i,t
...
102 (7, 5, 2, 4, 0, 6, 9, 3, 1, 8)
258 (1, 4, 0, 2, 7, 3, 5, 9, 6, 8)
892 (1, 4, 0, 2, 7, 3, 5, 9, 6, 8)
2878 (7, 5, 2, 4, 0, 6, 9, 3, 1, 8)
4123 (5, 8, 0, 1, 7, 3, 2, 4, 6, 9)
4633 (5, 8, 0, 1, 7, 3, 2, 4, 6, 9)
>>> 10*9*8*7*6*5*4*3*2
3628800
>>> 2**19937 - 1
431542479738816264805523551633791983905393 [snip]
>>> L = list()
>>> for i in range(5000):
... L.append(random.choice(xrange(3628800)))
...
>>> len(set(L))
4997
Edit: FWIW, if the probability of not having two the same for a single pair is: p = (10! - 1) / 10! and the number of combinations is: C = 5000! / 4998! * 2! = 5000 * 4999 / 2 then the probability of having a duplicate is:
>>> import math
>>> f = math.factorial(10)
>>> p = 1.0*(f-1)/f
>>> C = 5000.0*4999/2
>>> 1 - p**C
0.96806256495611798