There are two parameters while using RBF kernels with Support Vector Machines: C and γ. It is not known beforehand which C and γ are the best for one problem; consequently some kind of model selection (parameter search) must be done. The goal is to identify good (C;γ) so that the classier can accurately predict unknown data (i.e., testing data).
weka.classifiers.meta.GridSearch
is a meta-classifier for tuning a pair of parameters. It seems, however, that it takes ages to finish (when the dataset is rather large). What would you suggest to do in order to bring down the time required to accomplish this task?
According to A User s Guide to Support Vector Machines:
C : soft-margin constant . A smaller value of C allows to ignore points close to the boundary, and increases the margin.
γ> 0 is a parameter that controls the width of Gaussian