I have a lot of points (hundreds of thousands) and I want to check which ones are inside a polygon. For a relatively small polygon (i.e., likely to contain only tens or hundreds of points) I can just use the bounding box of the polygon as an initial check, and then do a regular point-in-poly check for those points inside the box. But imagine a large (i.e., likely to contain thousands of my points), irregularly shaped polygon. Many points will pass the bounding box check, and furthermore the point-in-poly check will be more expensive because the larger polygon is made up of many more points. So I d like to be able to filter most points in or out without having to do the full point-in-poly check.
因此,我有计划,而且我主要想知道,我所说的什么是众所周知的算法,如果是的话,那么它所说的算法,以及我可能为它找到现有的法典。 我不相信我所描述的是哪怕是一 qua树或一tree树,我不知道如何寻找。 I m称其为“红树”。
目的是处理这些较大的多功能:
一种“红树”的预处理方法,即树 depth的深度因多角大小而异(即,使大圆形更加深入)。 rec树将把多角的捆绑箱分割成4/4。 它将检查每季度是否完全在多角大楼内,完全不在多角。 如果两者都不会令人厌恶地分割分界线,则继续如此,直到所有开端完全位于内或外,或达到最大深度为止。 因此,这一想法是:(a) 进行这一树苗的预处理时间,尽管它自己将进行数点对面检查,但却是值得的,因为时间被要检查的点数所冲淡;(b) 绝大多数的点可以通过简单的捆绑箱子检查处理(如你 des树等一些检查),而较少的树木则需要做全点对口的检查(例如,当你到达一个仍在“内部”的叶子时)。
所谓的计算法是什么? 法典在哪里? 事实上,这似乎很难写字,但我是在跳跃加入编码之前,向我提出。