I m having trouble solving this integral in python. The function being integrated is not defined on the boundaries of integration. I ve found a few more questions similar to this, but all were very specific replies to the issue in particular. I don t want to approximate the integral too much, if possible not at all, as the reason I m doing this integral in the first place is to avoid an approximation. Is there any way to solve this integral?
import numpy as np
from pylab import *
import scipy
from math import *
from scipy import integrate
m_Earth_air = (28.0134*0.78084)+(31.9988*0.209476)+(39.948*0.00934)+(44.00995*0.000314)+(20.183*0.00001818)+(4.0026*0.00000524)+(83.80*0.00000114)+(131.30*0.000000087)+(16.04303*0.000002)+(2.01594*0.0000005)
Tb0 = 288.15
Lb0 = -6.5
Hb0 = 0.0
def Tm_0(z):
return Tb0+Lb0*(z-Hb0)
k = 1.38*10**-19 #cm^2.kg/s^2.K #Boltzmann cst
mp = 1.67262177*10**-27 #kg
Rad= 637100000.0 #radius planet #cm
g0 = 980.665 #cm/s^2
def g(z):
return (g0*((Rad/(Rad+z))**2.0))
def scale_height0(z):
return k*Tm_0(z*10**-5)/(m_Earth_air*mp*g(z))
def functionz(z,zvar):
return np.exp(-zvar/scale_height0(z))*((Rad+zvar)/(Rad+z))/((np.sqrt(((Rad+zvar)/(Rad+z))**2.0-1.0)))
def chapman0(z):
return (1.0/(scale_height0(z)))*((integrate.quad(lambda zvar: functionz(z,zvar), z, np.inf))[0])
print chapman0(1000000)
print chapman0(5000000)
The first block of variables and definitions are fine. The issue is in the "functionz(z,zvar)" and its integration. Any help very much appreciated !